大规模优化问题的杂交磷虾群算法

Ivana Stromberger, N. Bačanin, M. Tuba
{"title":"大规模优化问题的杂交磷虾群算法","authors":"Ivana Stromberger, N. Bačanin, M. Tuba","doi":"10.1109/SAMI.2017.7880356","DOIUrl":null,"url":null,"abstract":"In this paper we applied the krill herd algorithm hybridized with the firefly algorithm to bound-constrained large-scale optimization problems. We tested basic krill herd algorithm and basic firefly algorithm on the standard set of benchmark functions. The results were acceptable. Then, we hybridized the krill herd algorithm with the firefly algorithm by applying firefly algorithm's search equation to the original krill herd algorithm implementation. We tested the robustness and effectiveness of our hybridized algorithm on the same large-scale numerical benchmarks with different dimensionality in order to make comparative analysis and to measure optimization enhancements of our approach. Testing results proved that our proposed hybridized implementation improved results almost uniformly and that it has significant potential when dealing with global optimization problems.","PeriodicalId":105599,"journal":{"name":"2017 IEEE 15th International Symposium on Applied Machine Intelligence and Informatics (SAMI)","volume":"94 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Hybridized krill herd algorithm for large-scale optimization problems\",\"authors\":\"Ivana Stromberger, N. Bačanin, M. Tuba\",\"doi\":\"10.1109/SAMI.2017.7880356\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we applied the krill herd algorithm hybridized with the firefly algorithm to bound-constrained large-scale optimization problems. We tested basic krill herd algorithm and basic firefly algorithm on the standard set of benchmark functions. The results were acceptable. Then, we hybridized the krill herd algorithm with the firefly algorithm by applying firefly algorithm's search equation to the original krill herd algorithm implementation. We tested the robustness and effectiveness of our hybridized algorithm on the same large-scale numerical benchmarks with different dimensionality in order to make comparative analysis and to measure optimization enhancements of our approach. Testing results proved that our proposed hybridized implementation improved results almost uniformly and that it has significant potential when dealing with global optimization problems.\",\"PeriodicalId\":105599,\"journal\":{\"name\":\"2017 IEEE 15th International Symposium on Applied Machine Intelligence and Informatics (SAMI)\",\"volume\":\"94 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE 15th International Symposium on Applied Machine Intelligence and Informatics (SAMI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SAMI.2017.7880356\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 15th International Symposium on Applied Machine Intelligence and Informatics (SAMI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SAMI.2017.7880356","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

本文将磷虾群算法与萤火虫算法相结合,应用于有界约束的大规模优化问题。我们在基准函数的标准集上测试了基本磷虾群算法和基本萤火虫算法。结果是可以接受的。然后,将萤火虫算法的搜索方程应用到原磷虾群算法实现中,将磷虾群算法与萤火虫算法进行杂交。我们在相同的不同维数的大规模数值基准上测试了混合算法的鲁棒性和有效性,以进行对比分析和衡量我们的方法的优化增强。测试结果表明,我们提出的混合算法在处理全局优化问题时几乎一致地改善了结果,并且具有很大的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Hybridized krill herd algorithm for large-scale optimization problems
In this paper we applied the krill herd algorithm hybridized with the firefly algorithm to bound-constrained large-scale optimization problems. We tested basic krill herd algorithm and basic firefly algorithm on the standard set of benchmark functions. The results were acceptable. Then, we hybridized the krill herd algorithm with the firefly algorithm by applying firefly algorithm's search equation to the original krill herd algorithm implementation. We tested the robustness and effectiveness of our hybridized algorithm on the same large-scale numerical benchmarks with different dimensionality in order to make comparative analysis and to measure optimization enhancements of our approach. Testing results proved that our proposed hybridized implementation improved results almost uniformly and that it has significant potential when dealing with global optimization problems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Self-organising symbolic aggregate approximation for real-time fault detection and diagnosis in transient dynamic systems Robot navigation in unknown environment using fuzzy logic Artificial neural network based IDS Video-based measurement system of parameters of the pyrotechnic effect Building environment analysis based on clustering methods from sensor data on top of the Hadoop platform
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1