{"title":"基于生物地理学的优化与差分进化的杂交求解最优潮流问题","authors":"P. Roy, D. Mandal","doi":"10.4018/ijeoe.2013070106","DOIUrl":null,"url":null,"abstract":"The aim of this paper is to evaluate a hybrid biogeography-based optimization approach based on the hybridization of biogeography-based optimization with differential evolution to solve the optimal power flow problem. The proposed method combines the exploration of differential evolution with the exploitation of biogeography-based optimization effectively to generate the promising candidate solutions. Simulation experiments are carried on standard 26-bus and IEEE 30-bus systems to illustrate the efficacy of the proposed approach. Results demonstrated that the proposed approach converged to promising solutions in terms of quality and convergence rate when compared with the original biogeography-based optimization and other population based optimization techniques like simple genetic algorithm, mixed integer genetic algorithm, particle swarm optimization and craziness based particle swarm optimization.","PeriodicalId":246250,"journal":{"name":"Int. J. Energy Optim. Eng.","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Hybridization of Biogeography-Based: Optimization with Differential Evolution for Solving Optimal Power Flow Problems\",\"authors\":\"P. Roy, D. Mandal\",\"doi\":\"10.4018/ijeoe.2013070106\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The aim of this paper is to evaluate a hybrid biogeography-based optimization approach based on the hybridization of biogeography-based optimization with differential evolution to solve the optimal power flow problem. The proposed method combines the exploration of differential evolution with the exploitation of biogeography-based optimization effectively to generate the promising candidate solutions. Simulation experiments are carried on standard 26-bus and IEEE 30-bus systems to illustrate the efficacy of the proposed approach. Results demonstrated that the proposed approach converged to promising solutions in terms of quality and convergence rate when compared with the original biogeography-based optimization and other population based optimization techniques like simple genetic algorithm, mixed integer genetic algorithm, particle swarm optimization and craziness based particle swarm optimization.\",\"PeriodicalId\":246250,\"journal\":{\"name\":\"Int. J. Energy Optim. Eng.\",\"volume\":\"34 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Energy Optim. Eng.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/ijeoe.2013070106\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Energy Optim. Eng.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/ijeoe.2013070106","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Hybridization of Biogeography-Based: Optimization with Differential Evolution for Solving Optimal Power Flow Problems
The aim of this paper is to evaluate a hybrid biogeography-based optimization approach based on the hybridization of biogeography-based optimization with differential evolution to solve the optimal power flow problem. The proposed method combines the exploration of differential evolution with the exploitation of biogeography-based optimization effectively to generate the promising candidate solutions. Simulation experiments are carried on standard 26-bus and IEEE 30-bus systems to illustrate the efficacy of the proposed approach. Results demonstrated that the proposed approach converged to promising solutions in terms of quality and convergence rate when compared with the original biogeography-based optimization and other population based optimization techniques like simple genetic algorithm, mixed integer genetic algorithm, particle swarm optimization and craziness based particle swarm optimization.