Lin You, J. Ahn, Emily Hitz, J. Michelson, Y. Obeng, J. Kopanski
{"title":"用于后端线路计量的电磁场测试结构芯片","authors":"Lin You, J. Ahn, Emily Hitz, J. Michelson, Y. Obeng, J. Kopanski","doi":"10.1109/ICMTS.2015.7106101","DOIUrl":null,"url":null,"abstract":"A test chip to produce known and controllable gradients of surface potential and magnetic field at the chip surface and suitable for imaging with various types of scanning probe microscopes is presented. The purpose of the test chip is to evaluate various SPMs as metrology tools to image electro-magnetic fields within nanoelectronic devices and multi-level interconnects, and as metrology tools to detect defects in back end of line (BEOL) metallization and packaging processes. Four different levels of metal are used to create different buried structures that, when biased, will produce varying electric field and magnetic field distributions. Contacts to the chip are made via wire bonds to a printed circuit board (PCB) that allows programed external biases and ground to be applied to specific metal levels while imaging with a SPM. DC and high frequency COMSOL simulations of the test structures were conducted to determine the expected field distributions. Electric field can be imaged via scanning Kelvin force microscopy (SKFM); magnetic field via scanning magnetic force microscopy (MFM); and the capacitance of buried metal lines via scanning microwave microscopy (SMM). The combination of precisely known structures and accurate simulations will allow the spatial resolution and accuracy of various SPMs sensitive to electric field (potential) or magnetic field to be determined and improved.","PeriodicalId":177627,"journal":{"name":"Proceedings of the 2015 International Conference on Microelectronic Test Structures","volume":"72 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Electromagnetic field test structure chip for back end of the line metrology\",\"authors\":\"Lin You, J. Ahn, Emily Hitz, J. Michelson, Y. Obeng, J. Kopanski\",\"doi\":\"10.1109/ICMTS.2015.7106101\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A test chip to produce known and controllable gradients of surface potential and magnetic field at the chip surface and suitable for imaging with various types of scanning probe microscopes is presented. The purpose of the test chip is to evaluate various SPMs as metrology tools to image electro-magnetic fields within nanoelectronic devices and multi-level interconnects, and as metrology tools to detect defects in back end of line (BEOL) metallization and packaging processes. Four different levels of metal are used to create different buried structures that, when biased, will produce varying electric field and magnetic field distributions. Contacts to the chip are made via wire bonds to a printed circuit board (PCB) that allows programed external biases and ground to be applied to specific metal levels while imaging with a SPM. DC and high frequency COMSOL simulations of the test structures were conducted to determine the expected field distributions. Electric field can be imaged via scanning Kelvin force microscopy (SKFM); magnetic field via scanning magnetic force microscopy (MFM); and the capacitance of buried metal lines via scanning microwave microscopy (SMM). The combination of precisely known structures and accurate simulations will allow the spatial resolution and accuracy of various SPMs sensitive to electric field (potential) or magnetic field to be determined and improved.\",\"PeriodicalId\":177627,\"journal\":{\"name\":\"Proceedings of the 2015 International Conference on Microelectronic Test Structures\",\"volume\":\"72 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-03-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2015 International Conference on Microelectronic Test Structures\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMTS.2015.7106101\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2015 International Conference on Microelectronic Test Structures","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMTS.2015.7106101","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Electromagnetic field test structure chip for back end of the line metrology
A test chip to produce known and controllable gradients of surface potential and magnetic field at the chip surface and suitable for imaging with various types of scanning probe microscopes is presented. The purpose of the test chip is to evaluate various SPMs as metrology tools to image electro-magnetic fields within nanoelectronic devices and multi-level interconnects, and as metrology tools to detect defects in back end of line (BEOL) metallization and packaging processes. Four different levels of metal are used to create different buried structures that, when biased, will produce varying electric field and magnetic field distributions. Contacts to the chip are made via wire bonds to a printed circuit board (PCB) that allows programed external biases and ground to be applied to specific metal levels while imaging with a SPM. DC and high frequency COMSOL simulations of the test structures were conducted to determine the expected field distributions. Electric field can be imaged via scanning Kelvin force microscopy (SKFM); magnetic field via scanning magnetic force microscopy (MFM); and the capacitance of buried metal lines via scanning microwave microscopy (SMM). The combination of precisely known structures and accurate simulations will allow the spatial resolution and accuracy of various SPMs sensitive to electric field (potential) or magnetic field to be determined and improved.