混合基站空间信道协方差估计:基于张量分解的方法

Sungwoo Park, Anum Ali, N. G. Prelcic, R. Heath
{"title":"混合基站空间信道协方差估计:基于张量分解的方法","authors":"Sungwoo Park, Anum Ali, N. G. Prelcic, R. Heath","doi":"10.1109/GlobalSIP.2018.8646605","DOIUrl":null,"url":null,"abstract":"Spatial channel covariance information can replace instantaneous full channel state information for designing hybrid analog/digital precoders. Estimating the spatial channel covariance is challenging due to the inherent limitation of the hybrid architecture, i.e., much fewer radio frequency (RF) chains than antennas. In this paper, we propose a spatial channel covariance estimation method for spatially sparse time-varying frequency-selective channels. The proposed method leverages the fact that the channel can be represented as a low-rank higher-order tensor. Numerical results demonstrate that the proposed approach achieves higher estimation accuracy in comparison with existing covariance estimation methods.","PeriodicalId":119131,"journal":{"name":"2018 IEEE Global Conference on Signal and Information Processing (GlobalSIP)","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"SPATIAL CHANNEL COVARIANCE ESTIMATION FOR THE HYBRID ARCHITECTURE AT A BASE STATION: A TENSOR-DECOMPOSITION-BASED APPROACH\",\"authors\":\"Sungwoo Park, Anum Ali, N. G. Prelcic, R. Heath\",\"doi\":\"10.1109/GlobalSIP.2018.8646605\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Spatial channel covariance information can replace instantaneous full channel state information for designing hybrid analog/digital precoders. Estimating the spatial channel covariance is challenging due to the inherent limitation of the hybrid architecture, i.e., much fewer radio frequency (RF) chains than antennas. In this paper, we propose a spatial channel covariance estimation method for spatially sparse time-varying frequency-selective channels. The proposed method leverages the fact that the channel can be represented as a low-rank higher-order tensor. Numerical results demonstrate that the proposed approach achieves higher estimation accuracy in comparison with existing covariance estimation methods.\",\"PeriodicalId\":119131,\"journal\":{\"name\":\"2018 IEEE Global Conference on Signal and Information Processing (GlobalSIP)\",\"volume\":\"28 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE Global Conference on Signal and Information Processing (GlobalSIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/GlobalSIP.2018.8646605\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Global Conference on Signal and Information Processing (GlobalSIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GlobalSIP.2018.8646605","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

空间信道协方差信息可以代替瞬时全信道状态信息用于模拟/数字混合预编码器的设计。由于混合架构的固有限制,即射频(RF)链比天线少得多,因此估计空间信道协方差具有挑战性。针对空间稀疏时变选频信道,提出了一种空间信道协方差估计方法。所提出的方法利用了信道可以表示为低秩高阶张量的事实。数值结果表明,与现有的协方差估计方法相比,该方法具有更高的估计精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
SPATIAL CHANNEL COVARIANCE ESTIMATION FOR THE HYBRID ARCHITECTURE AT A BASE STATION: A TENSOR-DECOMPOSITION-BASED APPROACH
Spatial channel covariance information can replace instantaneous full channel state information for designing hybrid analog/digital precoders. Estimating the spatial channel covariance is challenging due to the inherent limitation of the hybrid architecture, i.e., much fewer radio frequency (RF) chains than antennas. In this paper, we propose a spatial channel covariance estimation method for spatially sparse time-varying frequency-selective channels. The proposed method leverages the fact that the channel can be represented as a low-rank higher-order tensor. Numerical results demonstrate that the proposed approach achieves higher estimation accuracy in comparison with existing covariance estimation methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
ADAPTIVE CSP FOR USER INDEPENDENCE IN MI-BCI PARADIGM FOR UPPER LIMB STROKE REHABILITATION SPATIAL FOURIER TRANSFORM FOR DETECTION AND ANALYSIS OF PERIODIC ASTROPHYSICAL PULSES CNN ARCHITECTURES FOR GRAPH DATA OVERT SPEECH RETRIEVAL FROM NEUROMAGNETIC SIGNALS USING WAVELETS AND ARTIFICIAL NEURAL NETWORKS CNN BASED RICIAN K FACTOR ESTIMATION FOR NON-STATIONARY INDUSTRIAL FADING CHANNEL
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1