VRules:有效的基于关联的视频分类器

Ling Chen, S. Bhowmick, L. Chia
{"title":"VRules:有效的基于关联的视频分类器","authors":"Ling Chen, S. Bhowmick, L. Chia","doi":"10.1145/1032604.1032619","DOIUrl":null,"url":null,"abstract":"Video classification is an important step towards multimedia understanding. Most state-of-the-art approaches which apply HMM to capture the temporal information of videos have the limitation by assuming that the current state of a video depends only on the immediate previous state. Nevertheless, this assumption may not hold for videos of various categories. In this paper, we present an effective video classifier which employs the association rule mining technique to discover the actual dependence relationship between video states. The discriminatory state transition patterns mined from different video categories are then used to perform classification. Besides capturing the association between states in the time space, we also capture the association between low-level features in spatial dimension to further distinguish the semantics of videos. Experimental results show that the performance of our association rule based classifier is quite promising.","PeriodicalId":415406,"journal":{"name":"ACM International Workshop on Multimedia Databases","volume":"56 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"VRules: an effective association-based classifier for videos\",\"authors\":\"Ling Chen, S. Bhowmick, L. Chia\",\"doi\":\"10.1145/1032604.1032619\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Video classification is an important step towards multimedia understanding. Most state-of-the-art approaches which apply HMM to capture the temporal information of videos have the limitation by assuming that the current state of a video depends only on the immediate previous state. Nevertheless, this assumption may not hold for videos of various categories. In this paper, we present an effective video classifier which employs the association rule mining technique to discover the actual dependence relationship between video states. The discriminatory state transition patterns mined from different video categories are then used to perform classification. Besides capturing the association between states in the time space, we also capture the association between low-level features in spatial dimension to further distinguish the semantics of videos. Experimental results show that the performance of our association rule based classifier is quite promising.\",\"PeriodicalId\":415406,\"journal\":{\"name\":\"ACM International Workshop on Multimedia Databases\",\"volume\":\"56 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-11-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM International Workshop on Multimedia Databases\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1032604.1032619\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM International Workshop on Multimedia Databases","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1032604.1032619","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

视频分类是理解多媒体的重要步骤。大多数应用HMM来捕获视频时间信息的最先进的方法都有一个局限性,即假设视频的当前状态仅取决于前一个状态。然而,这种假设可能不适用于各种类型的视频。本文提出了一种有效的视频分类器,该分类器采用关联规则挖掘技术来发现视频状态之间的实际依赖关系。然后使用从不同视频类别中挖掘的歧视性状态转移模式进行分类。除了在时间空间上捕获状态之间的关联外,我们还在空间维度上捕获低级特征之间的关联,以进一步区分视频的语义。实验结果表明,基于关联规则的分类器具有良好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
VRules: an effective association-based classifier for videos
Video classification is an important step towards multimedia understanding. Most state-of-the-art approaches which apply HMM to capture the temporal information of videos have the limitation by assuming that the current state of a video depends only on the immediate previous state. Nevertheless, this assumption may not hold for videos of various categories. In this paper, we present an effective video classifier which employs the association rule mining technique to discover the actual dependence relationship between video states. The discriminatory state transition patterns mined from different video categories are then used to perform classification. Besides capturing the association between states in the time space, we also capture the association between low-level features in spatial dimension to further distinguish the semantics of videos. Experimental results show that the performance of our association rule based classifier is quite promising.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Automatic image annotation and retrieval using subspace clustering algorithm Indexing of variable length multi-attribute motion data A motion based scene tree for browsing and retrieval of compressed videos VRules: an effective association-based classifier for videos Content-based sub-image retrieval using relevance feedback
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1