{"title":"预测社会排斥:社会网络中的语言排斥研究","authors":"Greta Gandolfi, C. Strapparava","doi":"10.4000/books.aaccademia.8353","DOIUrl":null,"url":null,"abstract":"Ostracism is a community-level phenomenon, shared by most social animals, including humans. Its detection plays a crucial role for the individual, with possible evolutionary consequences for the species. Considering (1) its bound with communication and (2) its social nature, we hypothesise the combination of (a) linguistic and (b) community-level features to have a positive impact on the automatic recognition of ostracism in human online communities. We model an English linguistic community through Reddit data and we analyse the performance of simple classification algorithms. We show how models based on the combination of (a) and (b) generally outperform the same architectures when fed by (a) or (b) in isolation.1","PeriodicalId":300279,"journal":{"name":"Proceedings of the Seventh Italian Conference on Computational Linguistics CLiC-it 2020","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Predicting Social Exclusion: A Study of Linguistic Ostracism in Social Networks\",\"authors\":\"Greta Gandolfi, C. Strapparava\",\"doi\":\"10.4000/books.aaccademia.8353\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Ostracism is a community-level phenomenon, shared by most social animals, including humans. Its detection plays a crucial role for the individual, with possible evolutionary consequences for the species. Considering (1) its bound with communication and (2) its social nature, we hypothesise the combination of (a) linguistic and (b) community-level features to have a positive impact on the automatic recognition of ostracism in human online communities. We model an English linguistic community through Reddit data and we analyse the performance of simple classification algorithms. We show how models based on the combination of (a) and (b) generally outperform the same architectures when fed by (a) or (b) in isolation.1\",\"PeriodicalId\":300279,\"journal\":{\"name\":\"Proceedings of the Seventh Italian Conference on Computational Linguistics CLiC-it 2020\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Seventh Italian Conference on Computational Linguistics CLiC-it 2020\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4000/books.aaccademia.8353\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Seventh Italian Conference on Computational Linguistics CLiC-it 2020","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4000/books.aaccademia.8353","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Predicting Social Exclusion: A Study of Linguistic Ostracism in Social Networks
Ostracism is a community-level phenomenon, shared by most social animals, including humans. Its detection plays a crucial role for the individual, with possible evolutionary consequences for the species. Considering (1) its bound with communication and (2) its social nature, we hypothesise the combination of (a) linguistic and (b) community-level features to have a positive impact on the automatic recognition of ostracism in human online communities. We model an English linguistic community through Reddit data and we analyse the performance of simple classification algorithms. We show how models based on the combination of (a) and (b) generally outperform the same architectures when fed by (a) or (b) in isolation.1