Jilven Albius, Rica Lorraine De La Cruz, John Bert Ivan Gumandoy, William Daryll Ofrin, Engr. Paul Enrico Puyo
{"title":"太阳能多网络温室:使用微控制器和基于物联网的应用的自动蘑菇监测和管理系统","authors":"Jilven Albius, Rica Lorraine De La Cruz, John Bert Ivan Gumandoy, William Daryll Ofrin, Engr. Paul Enrico Puyo","doi":"10.53378/352853","DOIUrl":null,"url":null,"abstract":"This study utilized the Solar Powered Multi-Network Greenhouse through microcontrollers and IoT-based application to design an automated mushroom monitoring and management system. As mushrooms are more to suffer from increased temperature especially in tropical countries like the Philippines, this study develops an automated system where composition is controlled by a microcontroller and monitored by Arduino IDE. The greenhouse monitoring device used different highly-capable sensors, which provides accurate parameters used for monitoring systems and better control management for cultivation. The different possible solutions to control parameters and maintain stability value suitable for mushroom cultivation were addressed. Thus, the prototype went through series of trials and tests to ensure functionality and accuracy of the device. Likewise, performance testing was conducted for temperature, relative humidity, and light to control and monitor the needs of the mushroom. The results revealed that the device is accurate, functional and capable. The study suggests that the greenhouse could be improved by installing a CCTV for constant monitoring of the interior and exterior of the greenhouse. The greenhouse could also be considered to be situated in a more private place as well as improve some of the application features.","PeriodicalId":326677,"journal":{"name":"International Journal of Science, Technology, Engineering and Mathematics","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Solar-Powered Multi-Network Greenhouse: Automated Mushroom Monitoring and Management System Using Microcontrollers and IoT-Based Applications\",\"authors\":\"Jilven Albius, Rica Lorraine De La Cruz, John Bert Ivan Gumandoy, William Daryll Ofrin, Engr. Paul Enrico Puyo\",\"doi\":\"10.53378/352853\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study utilized the Solar Powered Multi-Network Greenhouse through microcontrollers and IoT-based application to design an automated mushroom monitoring and management system. As mushrooms are more to suffer from increased temperature especially in tropical countries like the Philippines, this study develops an automated system where composition is controlled by a microcontroller and monitored by Arduino IDE. The greenhouse monitoring device used different highly-capable sensors, which provides accurate parameters used for monitoring systems and better control management for cultivation. The different possible solutions to control parameters and maintain stability value suitable for mushroom cultivation were addressed. Thus, the prototype went through series of trials and tests to ensure functionality and accuracy of the device. Likewise, performance testing was conducted for temperature, relative humidity, and light to control and monitor the needs of the mushroom. The results revealed that the device is accurate, functional and capable. The study suggests that the greenhouse could be improved by installing a CCTV for constant monitoring of the interior and exterior of the greenhouse. The greenhouse could also be considered to be situated in a more private place as well as improve some of the application features.\",\"PeriodicalId\":326677,\"journal\":{\"name\":\"International Journal of Science, Technology, Engineering and Mathematics\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Science, Technology, Engineering and Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.53378/352853\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Science, Technology, Engineering and Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.53378/352853","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Solar-Powered Multi-Network Greenhouse: Automated Mushroom Monitoring and Management System Using Microcontrollers and IoT-Based Applications
This study utilized the Solar Powered Multi-Network Greenhouse through microcontrollers and IoT-based application to design an automated mushroom monitoring and management system. As mushrooms are more to suffer from increased temperature especially in tropical countries like the Philippines, this study develops an automated system where composition is controlled by a microcontroller and monitored by Arduino IDE. The greenhouse monitoring device used different highly-capable sensors, which provides accurate parameters used for monitoring systems and better control management for cultivation. The different possible solutions to control parameters and maintain stability value suitable for mushroom cultivation were addressed. Thus, the prototype went through series of trials and tests to ensure functionality and accuracy of the device. Likewise, performance testing was conducted for temperature, relative humidity, and light to control and monitor the needs of the mushroom. The results revealed that the device is accurate, functional and capable. The study suggests that the greenhouse could be improved by installing a CCTV for constant monitoring of the interior and exterior of the greenhouse. The greenhouse could also be considered to be situated in a more private place as well as improve some of the application features.