预测普萨(比哈尔邦)年最大降雨量的最佳拟合概率分布模型

J. Kumar, R. Suresh, J. .
{"title":"预测普萨(比哈尔邦)年最大降雨量的最佳拟合概率分布模型","authors":"J. Kumar, R. Suresh, J. .","doi":"10.46492/ijai/2018.3.1.21","DOIUrl":null,"url":null,"abstract":"In present study an attempt has been made to evaluate the suitable probability distribution models for predicting 1, 2, 3, 4, 5, 6 and 7-days annual maximum rainfall amounts based on 39 years (1964 to 2002) daily rainfall data. Three probability distribution models namely: Log Normal distribution, Log Pearson Type-III distribution and Gumbel distribution models were considered to evaluate their goodness of fit. The Weibull’s method was used for computation of observed rainfall values at1, 5, 20, 30, 50, 95 and 99 percent probability levels. The Log Pearson type –III distribution was found suitable for 1 and 2 days maximum annual rainfall, while Gumbel distribution was found to be the best for predicting 3, 4, 5, 6 and 7- days annual maximum rainfall amounts. The relationships between annual maximum rainfall and return periods were also developed. The non – linear relationships (i.e. logarithmic) were found to be most suitable for all the cases.","PeriodicalId":250014,"journal":{"name":"International Journal of Agricultural Invention","volume":"54 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Best-fit probability distribution model for predicting annual maximum rainfall of Pusa (Bihar)\",\"authors\":\"J. Kumar, R. Suresh, J. .\",\"doi\":\"10.46492/ijai/2018.3.1.21\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In present study an attempt has been made to evaluate the suitable probability distribution models for predicting 1, 2, 3, 4, 5, 6 and 7-days annual maximum rainfall amounts based on 39 years (1964 to 2002) daily rainfall data. Three probability distribution models namely: Log Normal distribution, Log Pearson Type-III distribution and Gumbel distribution models were considered to evaluate their goodness of fit. The Weibull’s method was used for computation of observed rainfall values at1, 5, 20, 30, 50, 95 and 99 percent probability levels. The Log Pearson type –III distribution was found suitable for 1 and 2 days maximum annual rainfall, while Gumbel distribution was found to be the best for predicting 3, 4, 5, 6 and 7- days annual maximum rainfall amounts. The relationships between annual maximum rainfall and return periods were also developed. The non – linear relationships (i.e. logarithmic) were found to be most suitable for all the cases.\",\"PeriodicalId\":250014,\"journal\":{\"name\":\"International Journal of Agricultural Invention\",\"volume\":\"54 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Agricultural Invention\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.46492/ijai/2018.3.1.21\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Agricultural Invention","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46492/ijai/2018.3.1.21","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文利用1964 ~ 2002年39年逐日降水资料,探讨了预测1、2、3、4、5、6、7天年最大降水量的概率分布模型。考虑三种概率分布模型:Log正态分布、Log Pearson - iii型分布和Gumbel分布模型来评估它们的拟合优度。威布尔方法用于计算在1、5、20、30、50、95%和99%概率水平上的观测降雨量。Log Pearson - iii型分布适用于1和2天的年最大降雨量,而Gumbel分布适用于3、4、5、6和7天的年最大降雨量。研究了年最大降雨量与回归期的关系。发现非线性关系(即对数关系)最适合于所有情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Best-fit probability distribution model for predicting annual maximum rainfall of Pusa (Bihar)
In present study an attempt has been made to evaluate the suitable probability distribution models for predicting 1, 2, 3, 4, 5, 6 and 7-days annual maximum rainfall amounts based on 39 years (1964 to 2002) daily rainfall data. Three probability distribution models namely: Log Normal distribution, Log Pearson Type-III distribution and Gumbel distribution models were considered to evaluate their goodness of fit. The Weibull’s method was used for computation of observed rainfall values at1, 5, 20, 30, 50, 95 and 99 percent probability levels. The Log Pearson type –III distribution was found suitable for 1 and 2 days maximum annual rainfall, while Gumbel distribution was found to be the best for predicting 3, 4, 5, 6 and 7- days annual maximum rainfall amounts. The relationships between annual maximum rainfall and return periods were also developed. The non – linear relationships (i.e. logarithmic) were found to be most suitable for all the cases.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A study on water seepage losses for ponds and reservoirs In-situ trash management induced sustainability of soil health to produce the qualitative products Value chain analysis of turmeric subsector in Surkhet district of Nepal Estimation of heterosis for some traits in Linseed (Linum usitatissimum L.) in Central Uttar Pradesh Genotype x environment interaction analysis in Wheat (Triticum aestivum L.)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1