基于联合近似对角化发散的脑机接口睡意检测方案

T. Reddy, Yu-kai Wang, Chin-Teng Lin, Javier Andreu-Perez
{"title":"基于联合近似对角化发散的脑机接口睡意检测方案","authors":"T. Reddy, Yu-kai Wang, Chin-Teng Lin, Javier Andreu-Perez","doi":"10.1109/FUZZ45933.2021.9494500","DOIUrl":null,"url":null,"abstract":"Neurons usually converse through electrochemical signals and pooled neuronal firings feasibly be recorded on the scalp through the medium of electroencephalogram (EEG). EEG waveforms are recorded, analysed and categorized across directives concerning a Brain-Computer Interface (BCI). Deteriorated signal to noise ratio and non-stationarities stand as a paramount obstacle in steady decoding of EEG. Appearance of non-stationarities across EEG patterns notably upset the feature waveforms thus worsening the functioning of detection block and as a whole the Brain Computer Interface. Stationary Subspace schemes bring to light subspaces within which data distribution persists stably over time. Current work focuses on the development of a novel spatial transform based feature extraction scheme to address nonstationarity in EEG signals recorded against a drowsiness detection problem (a machine learning regression scenario). The presented approach: F-DIV-IT-JAD-WS derived features distinctly surpassed DivOVR-FuzzyCSP-WS based standard features across RMSE and CC performance criteria pair. We construe that the propounded feature derivation approach based on F-DIV-IT-JAD-WS will usher a significant attention in researchers who are developing algorithms for signal processing, specifically, for BCI regression scenarios.","PeriodicalId":151289,"journal":{"name":"2021 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"JOINT APPROXIMATE DIAGONALIZATION DIVERGENCE BASED SCHEME FOR EEG DROWSINESS DETECTION BRAIN COMPUTER INTERFACES\",\"authors\":\"T. Reddy, Yu-kai Wang, Chin-Teng Lin, Javier Andreu-Perez\",\"doi\":\"10.1109/FUZZ45933.2021.9494500\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Neurons usually converse through electrochemical signals and pooled neuronal firings feasibly be recorded on the scalp through the medium of electroencephalogram (EEG). EEG waveforms are recorded, analysed and categorized across directives concerning a Brain-Computer Interface (BCI). Deteriorated signal to noise ratio and non-stationarities stand as a paramount obstacle in steady decoding of EEG. Appearance of non-stationarities across EEG patterns notably upset the feature waveforms thus worsening the functioning of detection block and as a whole the Brain Computer Interface. Stationary Subspace schemes bring to light subspaces within which data distribution persists stably over time. Current work focuses on the development of a novel spatial transform based feature extraction scheme to address nonstationarity in EEG signals recorded against a drowsiness detection problem (a machine learning regression scenario). The presented approach: F-DIV-IT-JAD-WS derived features distinctly surpassed DivOVR-FuzzyCSP-WS based standard features across RMSE and CC performance criteria pair. We construe that the propounded feature derivation approach based on F-DIV-IT-JAD-WS will usher a significant attention in researchers who are developing algorithms for signal processing, specifically, for BCI regression scenarios.\",\"PeriodicalId\":151289,\"journal\":{\"name\":\"2021 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE)\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FUZZ45933.2021.9494500\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FUZZ45933.2021.9494500","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

神经元通常通过电化学信号进行交换,通过脑电图(EEG)可以在头皮上记录到神经元的放电。脑电图波形记录,分析和分类指令有关脑机接口(BCI)。信噪比恶化和非平稳性是脑电图稳定解码的主要障碍。脑电图模式的非平稳性明显扰乱了特征波形,从而恶化了检测块和整个脑机接口的功能。平稳子空间方案揭示了数据随时间稳定分布的子空间。目前的工作重点是开发一种新的基于空间变换的特征提取方案,以解决针对困倦检测问题(机器学习回归场景)记录的脑电图信号的非平稳性。提出的方法:F-DIV-IT-JAD-WS衍生的特征在RMSE和CC性能标准对上明显优于基于DivOVR-FuzzyCSP-WS的标准特征。我们认为,所提出的基于F-DIV-IT-JAD-WS的特征派生方法将引起正在开发信号处理算法的研究人员的极大关注,特别是针对BCI回归场景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
JOINT APPROXIMATE DIAGONALIZATION DIVERGENCE BASED SCHEME FOR EEG DROWSINESS DETECTION BRAIN COMPUTER INTERFACES
Neurons usually converse through electrochemical signals and pooled neuronal firings feasibly be recorded on the scalp through the medium of electroencephalogram (EEG). EEG waveforms are recorded, analysed and categorized across directives concerning a Brain-Computer Interface (BCI). Deteriorated signal to noise ratio and non-stationarities stand as a paramount obstacle in steady decoding of EEG. Appearance of non-stationarities across EEG patterns notably upset the feature waveforms thus worsening the functioning of detection block and as a whole the Brain Computer Interface. Stationary Subspace schemes bring to light subspaces within which data distribution persists stably over time. Current work focuses on the development of a novel spatial transform based feature extraction scheme to address nonstationarity in EEG signals recorded against a drowsiness detection problem (a machine learning regression scenario). The presented approach: F-DIV-IT-JAD-WS derived features distinctly surpassed DivOVR-FuzzyCSP-WS based standard features across RMSE and CC performance criteria pair. We construe that the propounded feature derivation approach based on F-DIV-IT-JAD-WS will usher a significant attention in researchers who are developing algorithms for signal processing, specifically, for BCI regression scenarios.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
XAI Models for Quality of Experience Prediction in Wireless Networks Application of the Fuzzy Logic to Evaluation and Selection of Attribute Ranges in Machine Learning Kernel-Based k-Representatives Algorithm for Fuzzy Clustering of Categorical Data Necessary and sufficient condition for the existence of Atanassov's Intuitionistic Fuzzy based additive definite integral Identifying and Rectifying Rational Gaps in Fuzzy Rule Based Systems for Regression Problems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1