基于机器学习的心脏病预测和治疗建议

Ajay K. Gaikwad, Dipankar Sen, Sourabh Patil, Prof Ujvala Patil
{"title":"基于机器学习的心脏病预测和治疗建议","authors":"Ajay K. Gaikwad, Dipankar Sen, Sourabh Patil, Prof Ujvala Patil","doi":"10.55041/isjem00354","DOIUrl":null,"url":null,"abstract":"Disease anticipation systems are the better alternatives, to avoid the human errors in disease diagnosis and also assist in disease interference. Nowadays, the number of heart disease patients is increasing so we need an optimal heart disease prediction and treatment suggestion system. Heart disease dataset preparation, prediction system’s process flow design, process execution and results evaluation are the most common life cycle modules of any heart disease prediction system. Input dataset attributes modeling, attribute risk factor calculation; threshold determination and achieving the high accuracy in disease prediction are the major limitations of the existing heart disease prediction and treatment proposal systems. Keywords: Machine learning, Decision tree, Logistic regression.","PeriodicalId":285811,"journal":{"name":"International Scientific Journal of Engineering and Management","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Heart Disease Prediction and Treatment Suggestion Using Machine Learning\",\"authors\":\"Ajay K. Gaikwad, Dipankar Sen, Sourabh Patil, Prof Ujvala Patil\",\"doi\":\"10.55041/isjem00354\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Disease anticipation systems are the better alternatives, to avoid the human errors in disease diagnosis and also assist in disease interference. Nowadays, the number of heart disease patients is increasing so we need an optimal heart disease prediction and treatment suggestion system. Heart disease dataset preparation, prediction system’s process flow design, process execution and results evaluation are the most common life cycle modules of any heart disease prediction system. Input dataset attributes modeling, attribute risk factor calculation; threshold determination and achieving the high accuracy in disease prediction are the major limitations of the existing heart disease prediction and treatment proposal systems. Keywords: Machine learning, Decision tree, Logistic regression.\",\"PeriodicalId\":285811,\"journal\":{\"name\":\"International Scientific Journal of Engineering and Management\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Scientific Journal of Engineering and Management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.55041/isjem00354\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Scientific Journal of Engineering and Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.55041/isjem00354","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

疾病预测系统是较好的替代方案,既可以避免人为的疾病诊断错误,又可以辅助疾病干预。在心脏病患者数量不断增加的今天,我们需要一个优化的心脏病预测和治疗建议系统。心脏病数据集准备、预测系统流程设计、流程执行和结果评估是任何心脏病预测系统中最常见的生命周期模块。输入数据集属性建模,属性风险因子计算;阈值的确定和疾病预测的高精度是现有心脏病预测和治疗方案系统的主要局限性。关键词:机器学习,决策树,逻辑回归。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Heart Disease Prediction and Treatment Suggestion Using Machine Learning
Disease anticipation systems are the better alternatives, to avoid the human errors in disease diagnosis and also assist in disease interference. Nowadays, the number of heart disease patients is increasing so we need an optimal heart disease prediction and treatment suggestion system. Heart disease dataset preparation, prediction system’s process flow design, process execution and results evaluation are the most common life cycle modules of any heart disease prediction system. Input dataset attributes modeling, attribute risk factor calculation; threshold determination and achieving the high accuracy in disease prediction are the major limitations of the existing heart disease prediction and treatment proposal systems. Keywords: Machine learning, Decision tree, Logistic regression.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
International trade and performance of firms- Trade dynamics of import export and productivity Effect Of Jeera Powder on the Sensory Attribute Of Carbonated RTS Functional Millet Based Whey Beverage Impact of Artificial Intelligence on Marketing strategies with reference to MNCs ANALYSIS OF INTERNATIONAL TRADE IN INDIA POST COVID-19 Tax Implications of Real Estate Investments: A Comprehensive Analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1