基于无人机的航空测绘倾斜图像识别

M. Attamimi, R. Mardiyanto, A. N. Irfansyah
{"title":"基于无人机的航空测绘倾斜图像识别","authors":"M. Attamimi, R. Mardiyanto, A. N. Irfansyah","doi":"10.1109/ISITIA.2018.8710975","DOIUrl":null,"url":null,"abstract":"In general, aerial mapping is an image registration problem, i.e., the problem of transforming different sets of images into one coordinate system. Aerial mapping is one of the important capability of an unmanned aerial vehicle (UAV). Here, the images processed by the registration system is strongly influenced by the quality of the image captured by the UAV. To select the image that will be processed efficiently is not easy considering the ground truth in the mapping process is not given before the UAV flies and captures the image. On the other hand, generally, UAV will fly and take the image in sequence regardless of the quality. These will result in several issues, such as: 1) the quality of mapping results becomes bad, and 2) the computational cost of registration process becomes high. To tackle such issues, therefore, we need a recognition system that is able to recognize images that should be excluded from the registration process. In this paper, we define such image as an “inclined image,” i.e., images captured by UAV not perpendicular with the ground. Although we can calculate the inclination angle using a gyroscope attached to the UAV, our interest here is to recognize the images without the use of such sensor like human do. To realize that, we utilize a deep learning method to build an inclined image recognition system. We tested our proposed system with images captured by UAV. The results showed that the proposed system yielded accuracy rate of 86.4%.","PeriodicalId":388463,"journal":{"name":"2018 International Seminar on Intelligent Technology and Its Applications (ISITIA)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Inclined Image Recognition for Aerial Mapping by Unmanned Aerial Vehicles\",\"authors\":\"M. Attamimi, R. Mardiyanto, A. N. Irfansyah\",\"doi\":\"10.1109/ISITIA.2018.8710975\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In general, aerial mapping is an image registration problem, i.e., the problem of transforming different sets of images into one coordinate system. Aerial mapping is one of the important capability of an unmanned aerial vehicle (UAV). Here, the images processed by the registration system is strongly influenced by the quality of the image captured by the UAV. To select the image that will be processed efficiently is not easy considering the ground truth in the mapping process is not given before the UAV flies and captures the image. On the other hand, generally, UAV will fly and take the image in sequence regardless of the quality. These will result in several issues, such as: 1) the quality of mapping results becomes bad, and 2) the computational cost of registration process becomes high. To tackle such issues, therefore, we need a recognition system that is able to recognize images that should be excluded from the registration process. In this paper, we define such image as an “inclined image,” i.e., images captured by UAV not perpendicular with the ground. Although we can calculate the inclination angle using a gyroscope attached to the UAV, our interest here is to recognize the images without the use of such sensor like human do. To realize that, we utilize a deep learning method to build an inclined image recognition system. We tested our proposed system with images captured by UAV. The results showed that the proposed system yielded accuracy rate of 86.4%.\",\"PeriodicalId\":388463,\"journal\":{\"name\":\"2018 International Seminar on Intelligent Technology and Its Applications (ISITIA)\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 International Seminar on Intelligent Technology and Its Applications (ISITIA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISITIA.2018.8710975\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 International Seminar on Intelligent Technology and Its Applications (ISITIA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISITIA.2018.8710975","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

一般来说,航空测绘是一个图像配准问题,即将不同的图像集转换成一个坐标系的问题。航空测图是无人机的重要能力之一。在这里,配准系统处理的图像受到无人机捕获图像质量的强烈影响。考虑到在无人机飞行和捕获图像之前,映射过程中的地面真实度是不确定的,因此选择需要有效处理的图像并不容易。另一方面,一般情况下,不管质量如何,无人机都会按顺序飞行和拍摄图像。这将导致以下几个问题:1)制图结果质量变差;2)配准过程的计算成本变高。因此,为了解决这些问题,我们需要一个识别系统,能够识别应该排除在配准过程中的图像。在本文中,我们将这种图像定义为“倾斜图像”,即无人机捕获的不垂直于地面的图像。虽然我们可以使用附着在无人机上的陀螺仪来计算倾角,但我们在这里的兴趣是在没有像人类那样使用这种传感器的情况下识别图像。为了实现这一点,我们利用深度学习方法来构建一个倾斜图像识别系统。我们用无人机捕获的图像对我们的系统进行了测试。结果表明,该系统的准确率为86.4%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Inclined Image Recognition for Aerial Mapping by Unmanned Aerial Vehicles
In general, aerial mapping is an image registration problem, i.e., the problem of transforming different sets of images into one coordinate system. Aerial mapping is one of the important capability of an unmanned aerial vehicle (UAV). Here, the images processed by the registration system is strongly influenced by the quality of the image captured by the UAV. To select the image that will be processed efficiently is not easy considering the ground truth in the mapping process is not given before the UAV flies and captures the image. On the other hand, generally, UAV will fly and take the image in sequence regardless of the quality. These will result in several issues, such as: 1) the quality of mapping results becomes bad, and 2) the computational cost of registration process becomes high. To tackle such issues, therefore, we need a recognition system that is able to recognize images that should be excluded from the registration process. In this paper, we define such image as an “inclined image,” i.e., images captured by UAV not perpendicular with the ground. Although we can calculate the inclination angle using a gyroscope attached to the UAV, our interest here is to recognize the images without the use of such sensor like human do. To realize that, we utilize a deep learning method to build an inclined image recognition system. We tested our proposed system with images captured by UAV. The results showed that the proposed system yielded accuracy rate of 86.4%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Losing Synchronism Technique based on Critical Trajectory Method for Obtaining the CCT with Installing SCES Design of a SINRD bandpass filter based on equivalent circuit method A Geometry-Based Underwater Acoustic Channel Model for Time Reversal Acoustic Communication Implementation and Feasibility Analysis of GSM Based Smart Energy Meter for Digitalized Power Consumption with Advanced Features Performance of BLDC Motor Speed Control Based on Hysteresis Current Control Mechanism
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1