汽车环境下无线电力传输系统中模数转换器的磁场耦合

Bumhee Bae, Sunkyu Kong, Jonghoon J. Kim, Sukjin Kim, Joungho Kim
{"title":"汽车环境下无线电力传输系统中模数转换器的磁场耦合","authors":"Bumhee Bae, Sunkyu Kong, Jonghoon J. Kim, Sukjin Kim, Joungho Kim","doi":"10.1109/EMCCOMPO.2013.6735207","DOIUrl":null,"url":null,"abstract":"There are multiple electrical devices on automotive system, which are control devices, communication devices, and digital devices. Each electrical device can generate magnetic field, one of the critical radiated electro-magnetic interference (EMI) elements. The operating frequency of each device is different and it means that the bandwidth of magnetic field is wide. Therefore, the strong magnetic fields can degrade the performance of diverse semiconductor systems in automotive applications, but it is not well discussed yet, even though the malfunction of electrical devices on automotive system is related to safe issues. So, we focus on strong magnetic field effects of semiconductor system. Among strong magnetic field source, we targeted wireless power transfer (WPT) system, which is spotlighted and promising technology for automotive and mobile charging system and significant magnetic field source. Furthermore, we choose analog-to-digital converter (ADC), sensitive to external noise and critical system involved in control devices related to the safety issues of automobile, as a targeted semiconductor system. In this paper, we discuss the magnetic coupling path and describe how to estimate the magnetic field effects on ADC with WPT. To estimate and analyze the targeted effects on ADC, we designed the ADC using a 0.13um CMOS process and WPT system using printed circuit board (PCB). Consequently, the magnetic field couples to ADC system, and there are three methods to estimate performance degradation of ADC by magnetic field effects, one is modeling, another is simulation, and the other is measurement.","PeriodicalId":302757,"journal":{"name":"2013 9th International Workshop on Electromagnetic Compatibility of Integrated Circuits (EMC Compo)","volume":"41 2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Magnetic field coupling on analog-to-digital converter from wireless power transfer system in automotive environment\",\"authors\":\"Bumhee Bae, Sunkyu Kong, Jonghoon J. Kim, Sukjin Kim, Joungho Kim\",\"doi\":\"10.1109/EMCCOMPO.2013.6735207\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"There are multiple electrical devices on automotive system, which are control devices, communication devices, and digital devices. Each electrical device can generate magnetic field, one of the critical radiated electro-magnetic interference (EMI) elements. The operating frequency of each device is different and it means that the bandwidth of magnetic field is wide. Therefore, the strong magnetic fields can degrade the performance of diverse semiconductor systems in automotive applications, but it is not well discussed yet, even though the malfunction of electrical devices on automotive system is related to safe issues. So, we focus on strong magnetic field effects of semiconductor system. Among strong magnetic field source, we targeted wireless power transfer (WPT) system, which is spotlighted and promising technology for automotive and mobile charging system and significant magnetic field source. Furthermore, we choose analog-to-digital converter (ADC), sensitive to external noise and critical system involved in control devices related to the safety issues of automobile, as a targeted semiconductor system. In this paper, we discuss the magnetic coupling path and describe how to estimate the magnetic field effects on ADC with WPT. To estimate and analyze the targeted effects on ADC, we designed the ADC using a 0.13um CMOS process and WPT system using printed circuit board (PCB). Consequently, the magnetic field couples to ADC system, and there are three methods to estimate performance degradation of ADC by magnetic field effects, one is modeling, another is simulation, and the other is measurement.\",\"PeriodicalId\":302757,\"journal\":{\"name\":\"2013 9th International Workshop on Electromagnetic Compatibility of Integrated Circuits (EMC Compo)\",\"volume\":\"41 2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 9th International Workshop on Electromagnetic Compatibility of Integrated Circuits (EMC Compo)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EMCCOMPO.2013.6735207\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 9th International Workshop on Electromagnetic Compatibility of Integrated Circuits (EMC Compo)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EMCCOMPO.2013.6735207","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

汽车系统中有多种电气设备,包括控制设备、通信设备和数字设备。每个电气设备都能产生磁场,是辐射电磁干扰(EMI)的关键要素之一。每个器件的工作频率不同,这意味着磁场的带宽很宽。因此,在汽车应用中,强磁场会降低各种半导体系统的性能,但目前尚未得到很好的讨论,尽管汽车系统中电气设备的故障涉及到安全问题。因此,我们重点研究半导体系统的强磁场效应。在强磁场源中,无线电力传输(WPT)系统是汽车和移动充电系统中最受关注和最有前途的技术,也是重要的磁场源。此外,我们选择模数转换器(ADC)作为目标半导体系统,对外部噪声敏感,涉及汽车安全问题的控制装置的关键系统。本文讨论了磁耦合路径,并描述了如何用WPT估计磁场对ADC的影响。为了评估和分析对ADC的目标影响,我们使用0.13um CMOS工艺和印刷电路板(PCB)的WPT系统设计了ADC。因此,磁场对ADC系统的影响是耦合的,对ADC系统磁场效应的性能退化估计有三种方法,一种是建模,一种是仿真,另一种是测量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Magnetic field coupling on analog-to-digital converter from wireless power transfer system in automotive environment
There are multiple electrical devices on automotive system, which are control devices, communication devices, and digital devices. Each electrical device can generate magnetic field, one of the critical radiated electro-magnetic interference (EMI) elements. The operating frequency of each device is different and it means that the bandwidth of magnetic field is wide. Therefore, the strong magnetic fields can degrade the performance of diverse semiconductor systems in automotive applications, but it is not well discussed yet, even though the malfunction of electrical devices on automotive system is related to safe issues. So, we focus on strong magnetic field effects of semiconductor system. Among strong magnetic field source, we targeted wireless power transfer (WPT) system, which is spotlighted and promising technology for automotive and mobile charging system and significant magnetic field source. Furthermore, we choose analog-to-digital converter (ADC), sensitive to external noise and critical system involved in control devices related to the safety issues of automobile, as a targeted semiconductor system. In this paper, we discuss the magnetic coupling path and describe how to estimate the magnetic field effects on ADC with WPT. To estimate and analyze the targeted effects on ADC, we designed the ADC using a 0.13um CMOS process and WPT system using printed circuit board (PCB). Consequently, the magnetic field couples to ADC system, and there are three methods to estimate performance degradation of ADC by magnetic field effects, one is modeling, another is simulation, and the other is measurement.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Characterization of conducted emission at high frequency under different temperature Signal integrity and EMC performance enhancement using 3D integrated circuits - A case study EMC immunity of integrated smart power transistors in a non-50Ω environment Active magnetic field canceling system Extraction of deterministic and random LSI noise models with the printed reverberation board
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1