基于TSS准则的TWIP膨胀管膨胀速率对应力演化的影响

Luo Yun, J. Wen-chun, Z. Fan, H. Shengjun
{"title":"基于TSS准则的TWIP膨胀管膨胀速率对应力演化的影响","authors":"Luo Yun, J. Wen-chun, Z. Fan, H. Shengjun","doi":"10.35840/2631-5076/9259","DOIUrl":null,"url":null,"abstract":"Expansion rate is key parameter to the manufacture of expandable tubular. In this paper, the effects of expansion rate on stress evolution of twinning induced plasticity (TWIP) steel expansion tubular were discussed in detail. A user subroutine UMAT using twin shear stress (TSS) yield criterion is employed to simulate the expanding process. The results show that the predicted residual stresses agree with the experiment very well. The axial expanding stress showed the layered distribution along the thickness direction and the hoop tensile stress is mainly located in the corner of expanded area. With the steady increases of expansion rate, the expanding axial, hoop and TSS stresses are all increased, and the increasing rate is decreased gradually. The residual stresses are tensile in inner surface and compressive in outer surface. Both the hoop and axial stresses are all increased with the increases of expansion rate. The suggested expansion rate should be controlled below 35%.","PeriodicalId":342629,"journal":{"name":"International Journal of Metallurgy and Metal Physics","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effects of Expansion Rate on Stress Evolution of TWIP Expandable Tubular Based on TSS Criterion\",\"authors\":\"Luo Yun, J. Wen-chun, Z. Fan, H. Shengjun\",\"doi\":\"10.35840/2631-5076/9259\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Expansion rate is key parameter to the manufacture of expandable tubular. In this paper, the effects of expansion rate on stress evolution of twinning induced plasticity (TWIP) steel expansion tubular were discussed in detail. A user subroutine UMAT using twin shear stress (TSS) yield criterion is employed to simulate the expanding process. The results show that the predicted residual stresses agree with the experiment very well. The axial expanding stress showed the layered distribution along the thickness direction and the hoop tensile stress is mainly located in the corner of expanded area. With the steady increases of expansion rate, the expanding axial, hoop and TSS stresses are all increased, and the increasing rate is decreased gradually. The residual stresses are tensile in inner surface and compressive in outer surface. Both the hoop and axial stresses are all increased with the increases of expansion rate. The suggested expansion rate should be controlled below 35%.\",\"PeriodicalId\":342629,\"journal\":{\"name\":\"International Journal of Metallurgy and Metal Physics\",\"volume\":\"38 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Metallurgy and Metal Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.35840/2631-5076/9259\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Metallurgy and Metal Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.35840/2631-5076/9259","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

膨胀率是膨胀管制造的关键参数。本文详细讨论了膨胀速率对孪生诱发塑性(TWIP)钢膨胀管应力演化的影响。采用双剪应力屈服准则的用户子程序UMAT对膨胀过程进行了模拟。结果表明,预测的残余应力与实验结果吻合较好。轴向膨胀应力沿厚度方向呈层状分布,环向拉应力主要位于膨胀区的角落。随着膨胀速率的稳定增加,膨胀轴向、环向和TSS应力均增大,且增大幅度逐渐减小。残余应力表现为内表面的拉应力和外表面的压应力。轴向应力和环向应力均随膨胀率的增大而增大。建议扩容率控制在35%以下。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Effects of Expansion Rate on Stress Evolution of TWIP Expandable Tubular Based on TSS Criterion
Expansion rate is key parameter to the manufacture of expandable tubular. In this paper, the effects of expansion rate on stress evolution of twinning induced plasticity (TWIP) steel expansion tubular were discussed in detail. A user subroutine UMAT using twin shear stress (TSS) yield criterion is employed to simulate the expanding process. The results show that the predicted residual stresses agree with the experiment very well. The axial expanding stress showed the layered distribution along the thickness direction and the hoop tensile stress is mainly located in the corner of expanded area. With the steady increases of expansion rate, the expanding axial, hoop and TSS stresses are all increased, and the increasing rate is decreased gradually. The residual stresses are tensile in inner surface and compressive in outer surface. Both the hoop and axial stresses are all increased with the increases of expansion rate. The suggested expansion rate should be controlled below 35%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Cavity Nucleation Study during Quasi-Superplasticity of an Ultralight Coarse-Grained Rolled Mg-7.28Li-2.19Al-0.1Y Alloy Microstructure and Properties of Tungsten Rhenium Alloy Prepared by Laser Sintering Effects of Expansion Rate on Stress Evolution of TWIP Expandable Tubular Based on TSS Criterion Effect of the Secondary Phase on the Corrosion of Al-Zn-Mg-Cu Alloy Microstructure and Mechanical Properties of Metal Injection Molding HK30 Stainless Steel Sintered in N2 and Ar Atmosphere
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1