使用RasterMiner发现隐藏在光栅图像中的知识

R. U. Kiran
{"title":"使用RasterMiner发现隐藏在光栅图像中的知识","authors":"R. U. Kiran","doi":"10.1145/3463944.3472812","DOIUrl":null,"url":null,"abstract":"The satellite imagery data naturally exists as raster data. Useful information that can empower the domain experts to improve their decision-making abilities lies hidden in this data. However, finding this hidden knowledge is non-trivial and challenging due to the lack of open source integrated software to discover knowledge from raster data. In particular, existing open-source general-purpose data mining libraries, such as Knime [1], Mahout [3], Weka [5], Sci-kit [4], and SPMF [2], are inadequate to find knowledge hidden in raster datasets. In this talk, we present rasterMiner an integrated open-source software to discover knowledge from raster imagery datasets. It currently provides unsupervised learning techniques, such as pattern mining and clustering, to discover knowledge hidden in raster data. The key features of our software are as follows: (i) provides four pattern mining algorithms and four clustering algorithms to discover knowledge from raster data, (ii) Our software also provides \"elbow method\" to choose an appropriate k value for k-mean and k-means++ algorithms, (iii) Our software presents an integrated GUI that can facilitate the domain experts to choose algorithm(s) of their choice, (iv) Our software can also be accessed as a python-library, (v) The knowledge discovered by our software can be stored in standard formats so that the generated knowledge can be visualized using any GIS software.","PeriodicalId":394510,"journal":{"name":"Proceedings of the 2021 ACM Workshop on Intelligent Cross-Data Analysis and Retrieval","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Discovering Knowledge Hidden in Raster Images using RasterMiner\",\"authors\":\"R. U. Kiran\",\"doi\":\"10.1145/3463944.3472812\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The satellite imagery data naturally exists as raster data. Useful information that can empower the domain experts to improve their decision-making abilities lies hidden in this data. However, finding this hidden knowledge is non-trivial and challenging due to the lack of open source integrated software to discover knowledge from raster data. In particular, existing open-source general-purpose data mining libraries, such as Knime [1], Mahout [3], Weka [5], Sci-kit [4], and SPMF [2], are inadequate to find knowledge hidden in raster datasets. In this talk, we present rasterMiner an integrated open-source software to discover knowledge from raster imagery datasets. It currently provides unsupervised learning techniques, such as pattern mining and clustering, to discover knowledge hidden in raster data. The key features of our software are as follows: (i) provides four pattern mining algorithms and four clustering algorithms to discover knowledge from raster data, (ii) Our software also provides \\\"elbow method\\\" to choose an appropriate k value for k-mean and k-means++ algorithms, (iii) Our software presents an integrated GUI that can facilitate the domain experts to choose algorithm(s) of their choice, (iv) Our software can also be accessed as a python-library, (v) The knowledge discovered by our software can be stored in standard formats so that the generated knowledge can be visualized using any GIS software.\",\"PeriodicalId\":394510,\"journal\":{\"name\":\"Proceedings of the 2021 ACM Workshop on Intelligent Cross-Data Analysis and Retrieval\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2021 ACM Workshop on Intelligent Cross-Data Analysis and Retrieval\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3463944.3472812\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2021 ACM Workshop on Intelligent Cross-Data Analysis and Retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3463944.3472812","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

卫星图像数据自然以栅格数据的形式存在。这些数据中隐藏着能够帮助领域专家提高决策能力的有用信息。然而,由于缺乏从栅格数据中发现知识的开源集成软件,发现这些隐藏的知识是非常重要和具有挑战性的。特别是,现有的开源通用数据挖掘库,如Knime[1]、Mahout[3]、Weka[5]、Sci-kit[4]和SPMF[2],不足以发现隐藏在栅格数据集中的知识。在这次演讲中,我们介绍了一个集成的开源软件rasterMiner,用于从栅格图像数据集中发现知识。它目前提供无监督学习技术,如模式挖掘和聚类,以发现隐藏在栅格数据中的知识。本软件的主要功能如下:(i)提供了四种模式挖掘算法和四种聚类算法来从栅格数据中发现知识,(ii)我们的软件还提供了“肘法”来为k-mean和k- meme++算法选择合适的k值,(iii)我们的软件提供了一个集成的GUI,可以方便领域专家选择他们选择的算法,(iv)我们的软件也可以作为python库访问。(v)本软件发现的知识可以标准格式储存,以便使用任何地理信息系统软件将生成的知识可视化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Discovering Knowledge Hidden in Raster Images using RasterMiner
The satellite imagery data naturally exists as raster data. Useful information that can empower the domain experts to improve their decision-making abilities lies hidden in this data. However, finding this hidden knowledge is non-trivial and challenging due to the lack of open source integrated software to discover knowledge from raster data. In particular, existing open-source general-purpose data mining libraries, such as Knime [1], Mahout [3], Weka [5], Sci-kit [4], and SPMF [2], are inadequate to find knowledge hidden in raster datasets. In this talk, we present rasterMiner an integrated open-source software to discover knowledge from raster imagery datasets. It currently provides unsupervised learning techniques, such as pattern mining and clustering, to discover knowledge hidden in raster data. The key features of our software are as follows: (i) provides four pattern mining algorithms and four clustering algorithms to discover knowledge from raster data, (ii) Our software also provides "elbow method" to choose an appropriate k value for k-mean and k-means++ algorithms, (iii) Our software presents an integrated GUI that can facilitate the domain experts to choose algorithm(s) of their choice, (iv) Our software can also be accessed as a python-library, (v) The knowledge discovered by our software can be stored in standard formats so that the generated knowledge can be visualized using any GIS software.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Cross-Modal Deep Neural Networks based Smartphone Authentication for Intelligent Things System Discovering Knowledge Hidden in Raster Images using RasterMiner Investigation on Privacy-Preserving Techniques For Personal Data Session details: Session 1: Full Papers Temperature Forecasting using Tower Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1