{"title":"开放数据存储库中的知识提取","authors":"V. Kakulapati","doi":"10.5772/intechopen.100234","DOIUrl":null,"url":null,"abstract":"The explosion of affluent social networks, online communities, and jointly generated information resources has accelerated the convergence of technological and social networks producing environments that reveal both the framework of the underlying information arrangements and the collective formation of their members. In studying the consequences of these developments, we face the opportunity to analyze the POD repository at unprecedented scale levels and extract useful information from query log data. This chapter aim is to improve the performance of a POD repository from a different point of view. Firstly, we propose a novel query recommender system to help users shorten their query sessions. The idea is to find shortcuts to speed up the user interaction with the open data repository and decrease the number of queries submitted. The proposed model, based on pseudo-relevance feedback, formalizes exploiting the knowledge mined from query logs to help users rapidly satisfy their information need.","PeriodicalId":376330,"journal":{"name":"Open Data [Working Title]","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Knowledge Extraction from Open Data Repository\",\"authors\":\"V. Kakulapati\",\"doi\":\"10.5772/intechopen.100234\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The explosion of affluent social networks, online communities, and jointly generated information resources has accelerated the convergence of technological and social networks producing environments that reveal both the framework of the underlying information arrangements and the collective formation of their members. In studying the consequences of these developments, we face the opportunity to analyze the POD repository at unprecedented scale levels and extract useful information from query log data. This chapter aim is to improve the performance of a POD repository from a different point of view. Firstly, we propose a novel query recommender system to help users shorten their query sessions. The idea is to find shortcuts to speed up the user interaction with the open data repository and decrease the number of queries submitted. The proposed model, based on pseudo-relevance feedback, formalizes exploiting the knowledge mined from query logs to help users rapidly satisfy their information need.\",\"PeriodicalId\":376330,\"journal\":{\"name\":\"Open Data [Working Title]\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Open Data [Working Title]\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5772/intechopen.100234\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Open Data [Working Title]","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5772/intechopen.100234","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The explosion of affluent social networks, online communities, and jointly generated information resources has accelerated the convergence of technological and social networks producing environments that reveal both the framework of the underlying information arrangements and the collective formation of their members. In studying the consequences of these developments, we face the opportunity to analyze the POD repository at unprecedented scale levels and extract useful information from query log data. This chapter aim is to improve the performance of a POD repository from a different point of view. Firstly, we propose a novel query recommender system to help users shorten their query sessions. The idea is to find shortcuts to speed up the user interaction with the open data repository and decrease the number of queries submitted. The proposed model, based on pseudo-relevance feedback, formalizes exploiting the knowledge mined from query logs to help users rapidly satisfy their information need.