开放数据存储库中的知识提取

V. Kakulapati
{"title":"开放数据存储库中的知识提取","authors":"V. Kakulapati","doi":"10.5772/intechopen.100234","DOIUrl":null,"url":null,"abstract":"The explosion of affluent social networks, online communities, and jointly generated information resources has accelerated the convergence of technological and social networks producing environments that reveal both the framework of the underlying information arrangements and the collective formation of their members. In studying the consequences of these developments, we face the opportunity to analyze the POD repository at unprecedented scale levels and extract useful information from query log data. This chapter aim is to improve the performance of a POD repository from a different point of view. Firstly, we propose a novel query recommender system to help users shorten their query sessions. The idea is to find shortcuts to speed up the user interaction with the open data repository and decrease the number of queries submitted. The proposed model, based on pseudo-relevance feedback, formalizes exploiting the knowledge mined from query logs to help users rapidly satisfy their information need.","PeriodicalId":376330,"journal":{"name":"Open Data [Working Title]","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Knowledge Extraction from Open Data Repository\",\"authors\":\"V. Kakulapati\",\"doi\":\"10.5772/intechopen.100234\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The explosion of affluent social networks, online communities, and jointly generated information resources has accelerated the convergence of technological and social networks producing environments that reveal both the framework of the underlying information arrangements and the collective formation of their members. In studying the consequences of these developments, we face the opportunity to analyze the POD repository at unprecedented scale levels and extract useful information from query log data. This chapter aim is to improve the performance of a POD repository from a different point of view. Firstly, we propose a novel query recommender system to help users shorten their query sessions. The idea is to find shortcuts to speed up the user interaction with the open data repository and decrease the number of queries submitted. The proposed model, based on pseudo-relevance feedback, formalizes exploiting the knowledge mined from query logs to help users rapidly satisfy their information need.\",\"PeriodicalId\":376330,\"journal\":{\"name\":\"Open Data [Working Title]\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Open Data [Working Title]\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5772/intechopen.100234\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Open Data [Working Title]","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5772/intechopen.100234","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

丰富的社会网络、在线社区和共同产生的信息资源的爆炸式增长,加速了技术和社会网络的融合,这些网络产生的环境既揭示了底层信息安排的框架,也揭示了其成员的集体形成。在研究这些开发的后果时,我们有机会以前所未有的规模分析POD存储库,并从查询日志数据中提取有用的信息。本章的目的是从另一个角度改进POD存储库的性能。首先,我们提出了一种新的查询推荐系统来帮助用户缩短查询时间。其思想是找到快捷方式来加快用户与开放数据存储库的交互,并减少提交的查询数量。该模型基于伪相关反馈,将从查询日志中挖掘的知识规范化,以帮助用户快速满足信息需求。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Knowledge Extraction from Open Data Repository
The explosion of affluent social networks, online communities, and jointly generated information resources has accelerated the convergence of technological and social networks producing environments that reveal both the framework of the underlying information arrangements and the collective formation of their members. In studying the consequences of these developments, we face the opportunity to analyze the POD repository at unprecedented scale levels and extract useful information from query log data. This chapter aim is to improve the performance of a POD repository from a different point of view. Firstly, we propose a novel query recommender system to help users shorten their query sessions. The idea is to find shortcuts to speed up the user interaction with the open data repository and decrease the number of queries submitted. The proposed model, based on pseudo-relevance feedback, formalizes exploiting the knowledge mined from query logs to help users rapidly satisfy their information need.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Open Government Data: Development, Practice, and Challenges Intrusion Detection Based on Big Data Fuzzy Analytics Knowledge Extraction from Open Data Repository
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1