形式概念分析在电子健康记录系统中的基础知识发现

C. Săcărea, Diana Sotropa, Diana Troanca
{"title":"形式概念分析在电子健康记录系统中的基础知识发现","authors":"C. Săcărea, Diana Sotropa, Diana Troanca","doi":"10.1109/SYNASC.2018.00049","DOIUrl":null,"url":null,"abstract":"Formal Concept Analysis (FCA) is a prominent research field having its roots in applied mathematics. Based on a mathematization of concepts and their hierarchies, FCA and its varieties have the potential to unify knowledge discovery methodologies. This paper is devoted to a summary of FCA applications in mining relevant conceptual landscapes from medical data. Electronic Health Records (EHR) constitute a significant technological advance in the way medical information is stored, communicated and processed. Digitized information systems are employed with the aim to improve efficiency, quality of care and costs. We are interested in combining different analysis techniques and visualization methods, such as analogical reasoning, FCA and graph databases in order to bring a fresh perspective over the medical process and to improve the task of knowledge discovery in EHR systems.","PeriodicalId":273805,"journal":{"name":"2018 20th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC)","volume":"70 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Formal Concept Analysis Grounded Knowledge Discovery in Electronic Health Record Systems\",\"authors\":\"C. Săcărea, Diana Sotropa, Diana Troanca\",\"doi\":\"10.1109/SYNASC.2018.00049\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Formal Concept Analysis (FCA) is a prominent research field having its roots in applied mathematics. Based on a mathematization of concepts and their hierarchies, FCA and its varieties have the potential to unify knowledge discovery methodologies. This paper is devoted to a summary of FCA applications in mining relevant conceptual landscapes from medical data. Electronic Health Records (EHR) constitute a significant technological advance in the way medical information is stored, communicated and processed. Digitized information systems are employed with the aim to improve efficiency, quality of care and costs. We are interested in combining different analysis techniques and visualization methods, such as analogical reasoning, FCA and graph databases in order to bring a fresh perspective over the medical process and to improve the task of knowledge discovery in EHR systems.\",\"PeriodicalId\":273805,\"journal\":{\"name\":\"2018 20th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC)\",\"volume\":\"70 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 20th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SYNASC.2018.00049\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 20th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SYNASC.2018.00049","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

形式概念分析(FCA)是一个重要的研究领域,它起源于应用数学。基于概念及其层次的数学化,FCA及其变体具有统一知识发现方法的潜力。本文致力于总结FCA在从医疗数据中挖掘相关概念景观中的应用。电子健康记录(EHR)是医疗信息存储、交流和处理方式的重大技术进步。采用数字化信息系统的目的是提高效率、护理质量和成本。我们对结合不同的分析技术和可视化方法感兴趣,例如类比推理,FCA和图形数据库,以便为医疗过程带来新的视角,并改进EHR系统中的知识发现任务。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Formal Concept Analysis Grounded Knowledge Discovery in Electronic Health Record Systems
Formal Concept Analysis (FCA) is a prominent research field having its roots in applied mathematics. Based on a mathematization of concepts and their hierarchies, FCA and its varieties have the potential to unify knowledge discovery methodologies. This paper is devoted to a summary of FCA applications in mining relevant conceptual landscapes from medical data. Electronic Health Records (EHR) constitute a significant technological advance in the way medical information is stored, communicated and processed. Digitized information systems are employed with the aim to improve efficiency, quality of care and costs. We are interested in combining different analysis techniques and visualization methods, such as analogical reasoning, FCA and graph databases in order to bring a fresh perspective over the medical process and to improve the task of knowledge discovery in EHR systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Inferring, Learning and Modelling Complex Systems with Bayesian Networks. A Tutorial An Improved Approach to Software Defect Prediction using a Hybrid Machine Learning Model Proving Reachability Properties by Coinduction (Extended Abstract) An Image Inpainting Technique Based on Parallel Projection Methods Face Detection and Recognition Methods using Deep Learning in Autonomous Driving
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1