{"title":"功率门控电路中nbti引起的性能下降的分析与缓解","authors":"Kai-Chiang Wu, Diana Marculescu, Ming-Chao Lee, Shih-Chieh Chang","doi":"10.1109/ISLPED.2011.5993626","DOIUrl":null,"url":null,"abstract":"Device aging, which causes significant loss on circuit performance and lifetime, has been a main factor in reliability degradation of nanoscale designs. Aggressive technology scaling trends, such as thinner gate oxide without proportional downscaling of supply voltage, necessitate an aging-aware analysis and optimization flow in the early design stages. Since PMOS sleep transistors in power-gated circuits suffer from static NBTI during active mode and age very rapidly, the aging of power-gated circuits should be explicitly addressed. In this paper, for power-gated circuits, we present a novel methodology for analyzing and mitigating NBTI-induced performance degradation. Aging effects on both logic networks and sleep transistors are jointly considered for accurate analysis. By introducing 25% redundant sleep transistors with reverse body bias applied, the proposed methodology can significantly mitigate the long-term performance degradation and thus extend the circuit lifetime by 3X.","PeriodicalId":117694,"journal":{"name":"IEEE/ACM International Symposium on Low Power Electronics and Design","volume":"194 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":"{\"title\":\"Analysis and mitigation of NBTI-induced performance degradation for power-gated circuits\",\"authors\":\"Kai-Chiang Wu, Diana Marculescu, Ming-Chao Lee, Shih-Chieh Chang\",\"doi\":\"10.1109/ISLPED.2011.5993626\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Device aging, which causes significant loss on circuit performance and lifetime, has been a main factor in reliability degradation of nanoscale designs. Aggressive technology scaling trends, such as thinner gate oxide without proportional downscaling of supply voltage, necessitate an aging-aware analysis and optimization flow in the early design stages. Since PMOS sleep transistors in power-gated circuits suffer from static NBTI during active mode and age very rapidly, the aging of power-gated circuits should be explicitly addressed. In this paper, for power-gated circuits, we present a novel methodology for analyzing and mitigating NBTI-induced performance degradation. Aging effects on both logic networks and sleep transistors are jointly considered for accurate analysis. By introducing 25% redundant sleep transistors with reverse body bias applied, the proposed methodology can significantly mitigate the long-term performance degradation and thus extend the circuit lifetime by 3X.\",\"PeriodicalId\":117694,\"journal\":{\"name\":\"IEEE/ACM International Symposium on Low Power Electronics and Design\",\"volume\":\"194 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"19\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE/ACM International Symposium on Low Power Electronics and Design\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISLPED.2011.5993626\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE/ACM International Symposium on Low Power Electronics and Design","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISLPED.2011.5993626","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Analysis and mitigation of NBTI-induced performance degradation for power-gated circuits
Device aging, which causes significant loss on circuit performance and lifetime, has been a main factor in reliability degradation of nanoscale designs. Aggressive technology scaling trends, such as thinner gate oxide without proportional downscaling of supply voltage, necessitate an aging-aware analysis and optimization flow in the early design stages. Since PMOS sleep transistors in power-gated circuits suffer from static NBTI during active mode and age very rapidly, the aging of power-gated circuits should be explicitly addressed. In this paper, for power-gated circuits, we present a novel methodology for analyzing and mitigating NBTI-induced performance degradation. Aging effects on both logic networks and sleep transistors are jointly considered for accurate analysis. By introducing 25% redundant sleep transistors with reverse body bias applied, the proposed methodology can significantly mitigate the long-term performance degradation and thus extend the circuit lifetime by 3X.