数据处理的异构计算平台

S. Prongnuch, T. Wiangtong
{"title":"数据处理的异构计算平台","authors":"S. Prongnuch, T. Wiangtong","doi":"10.1109/ISPACS.2016.7824762","DOIUrl":null,"url":null,"abstract":"The Heterogeneous Computing Platform (HCP) contains the multiple types of processing elements which generally are CPUs, GPUs, and DSPs or FPGAs. In this platform, there must be mechanism to control both hardware processing elements and co-processing elements for computational intensive applications. The main challenge is to make all elements work together efficiently through Application Programming Interface (API). This paper proposes performance evaluation of APIs and Partial Reconfigurable (PR) hardware accelerator on HCP. In Parallella single board computer, PR hardware accelerator on Zynq-7000 SoC is created and compared with the uses of Epiphany 16-cores co-processor. Matrix-vector multiplications in different sized are implemented to measure accelerator's performance in different design aspects. The results show that when processing data is increasing, the PR hardware accelerator is the most promising one to run the platform efficiently.","PeriodicalId":131543,"journal":{"name":"2016 International Symposium on Intelligent Signal Processing and Communication Systems (ISPACS)","volume":"208 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Heterogeneous Computing Platform for data processing\",\"authors\":\"S. Prongnuch, T. Wiangtong\",\"doi\":\"10.1109/ISPACS.2016.7824762\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Heterogeneous Computing Platform (HCP) contains the multiple types of processing elements which generally are CPUs, GPUs, and DSPs or FPGAs. In this platform, there must be mechanism to control both hardware processing elements and co-processing elements for computational intensive applications. The main challenge is to make all elements work together efficiently through Application Programming Interface (API). This paper proposes performance evaluation of APIs and Partial Reconfigurable (PR) hardware accelerator on HCP. In Parallella single board computer, PR hardware accelerator on Zynq-7000 SoC is created and compared with the uses of Epiphany 16-cores co-processor. Matrix-vector multiplications in different sized are implemented to measure accelerator's performance in different design aspects. The results show that when processing data is increasing, the PR hardware accelerator is the most promising one to run the platform efficiently.\",\"PeriodicalId\":131543,\"journal\":{\"name\":\"2016 International Symposium on Intelligent Signal Processing and Communication Systems (ISPACS)\",\"volume\":\"208 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 International Symposium on Intelligent Signal Processing and Communication Systems (ISPACS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISPACS.2016.7824762\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 International Symposium on Intelligent Signal Processing and Communication Systems (ISPACS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISPACS.2016.7824762","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

HCP (Heterogeneous Computing Platform)是由cpu、gpu、dsp或fpga等多种处理器组成的平台。在这个平台中,必须有一种机制来控制计算密集型应用的硬件处理元素和协同处理元素。主要的挑战是通过应用程序编程接口(API)使所有元素有效地协同工作。本文提出了基于HCP的api和部分可重构硬件加速器的性能评价。在parallelella单板计算机上,创建了Zynq-7000 SoC上的PR硬件加速器,并与Epiphany 16核协处理器的使用进行了比较。采用不同尺寸的矩阵向量乘法来衡量加速器在不同设计方面的性能。结果表明,当处理数据量增加时,PR硬件加速器是最有希望高效运行平台的硬件加速器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Heterogeneous Computing Platform for data processing
The Heterogeneous Computing Platform (HCP) contains the multiple types of processing elements which generally are CPUs, GPUs, and DSPs or FPGAs. In this platform, there must be mechanism to control both hardware processing elements and co-processing elements for computational intensive applications. The main challenge is to make all elements work together efficiently through Application Programming Interface (API). This paper proposes performance evaluation of APIs and Partial Reconfigurable (PR) hardware accelerator on HCP. In Parallella single board computer, PR hardware accelerator on Zynq-7000 SoC is created and compared with the uses of Epiphany 16-cores co-processor. Matrix-vector multiplications in different sized are implemented to measure accelerator's performance in different design aspects. The results show that when processing data is increasing, the PR hardware accelerator is the most promising one to run the platform efficiently.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
SDN experimental on the PSU network Time frequency analysis: A sparse S transform approach Automatic rule registration and deletion function on a packet lookup engine LSI Study on the latency efficient IFFT design method for low latency communication systems An inverse tone mapping operator based on Reinhard's global operator
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1