基于pso的去相关矩阵和DWT变换的多光谱图像压缩

Boucetta Aldjia, E. Melkemi Kamal
{"title":"基于pso的去相关矩阵和DWT变换的多光谱图像压缩","authors":"Boucetta Aldjia, E. Melkemi Kamal","doi":"10.1109/ICRAMI52622.2021.9585932","DOIUrl":null,"url":null,"abstract":"This paper proposes a new approach of multi-spectral image compression based on the combination of the particle swarm optimization (PSO) and the discrete wavelet transforms (DWT). In the first stage, the PSO is used to reduce the redundancies in the spectral domain. In fact, the PSO transforms a given multispectral image to optimize the energy in the first band. Despite to the complexity of this kind of approach, the transformed multispectral image is easily computed by multiplying a de-correlation matrix and the input multispectral image. The de-correlation matrix is estimated via a PSO evolution derived by a defined fitness function. In the second stage, the compressed data, related to the input multispectral image, is computed from the transformed multispectral image using an efficient 2D-DWT based algorithm. In addition to this compression approach, the original multispectral image can be recovered using a decompression algorithm. Experimental results show the validity of our proposed approach. These significant results are evaluated according to Peak signal-to-noise ratio (PSNR), compression ratio (CR) and bits per pixel (bpp) metrics.","PeriodicalId":440750,"journal":{"name":"2021 International Conference on Recent Advances in Mathematics and Informatics (ICRAMI)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Multispectral Images Compression using PSO-based De-correlation Matrix and DWT Transform\",\"authors\":\"Boucetta Aldjia, E. Melkemi Kamal\",\"doi\":\"10.1109/ICRAMI52622.2021.9585932\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a new approach of multi-spectral image compression based on the combination of the particle swarm optimization (PSO) and the discrete wavelet transforms (DWT). In the first stage, the PSO is used to reduce the redundancies in the spectral domain. In fact, the PSO transforms a given multispectral image to optimize the energy in the first band. Despite to the complexity of this kind of approach, the transformed multispectral image is easily computed by multiplying a de-correlation matrix and the input multispectral image. The de-correlation matrix is estimated via a PSO evolution derived by a defined fitness function. In the second stage, the compressed data, related to the input multispectral image, is computed from the transformed multispectral image using an efficient 2D-DWT based algorithm. In addition to this compression approach, the original multispectral image can be recovered using a decompression algorithm. Experimental results show the validity of our proposed approach. These significant results are evaluated according to Peak signal-to-noise ratio (PSNR), compression ratio (CR) and bits per pixel (bpp) metrics.\",\"PeriodicalId\":440750,\"journal\":{\"name\":\"2021 International Conference on Recent Advances in Mathematics and Informatics (ICRAMI)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 International Conference on Recent Advances in Mathematics and Informatics (ICRAMI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICRAMI52622.2021.9585932\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Conference on Recent Advances in Mathematics and Informatics (ICRAMI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICRAMI52622.2021.9585932","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

提出了一种基于粒子群优化(PSO)和离散小波变换(DWT)相结合的多光谱图像压缩方法。在第一阶段,利用粒子群算法减少谱域的冗余。实际上,粒子群算法对给定的多光谱图像进行变换,以优化第一波段的能量。尽管这种方法比较复杂,但变换后的多光谱图像只需与输入的多光谱图像相乘即可计算得到。通过定义适应度函数衍生的粒子群进化来估计去相关矩阵。在第二阶段,使用基于2D-DWT的高效算法从转换后的多光谱图像中计算与输入多光谱图像相关的压缩数据。除了这种压缩方法外,还可以使用解压缩算法恢复原始多光谱图像。实验结果表明了该方法的有效性。这些重要的结果是根据峰值信噪比(PSNR)、压缩比(CR)和每像素比特(bpp)指标来评估的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Multispectral Images Compression using PSO-based De-correlation Matrix and DWT Transform
This paper proposes a new approach of multi-spectral image compression based on the combination of the particle swarm optimization (PSO) and the discrete wavelet transforms (DWT). In the first stage, the PSO is used to reduce the redundancies in the spectral domain. In fact, the PSO transforms a given multispectral image to optimize the energy in the first band. Despite to the complexity of this kind of approach, the transformed multispectral image is easily computed by multiplying a de-correlation matrix and the input multispectral image. The de-correlation matrix is estimated via a PSO evolution derived by a defined fitness function. In the second stage, the compressed data, related to the input multispectral image, is computed from the transformed multispectral image using an efficient 2D-DWT based algorithm. In addition to this compression approach, the original multispectral image can be recovered using a decompression algorithm. Experimental results show the validity of our proposed approach. These significant results are evaluated according to Peak signal-to-noise ratio (PSNR), compression ratio (CR) and bits per pixel (bpp) metrics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Simulation Of The Structure FSS Using The WCIP Method For Dual Polarization Applications Impact of Mixup Hyperparameter Tunning on Deep Learning-based Systems for Acoustic Scene Classification Analysis of Solutions for a Reaction-Diffusion Epidemic Model Segmentation of Positron Emission Tomography Images Using Multi-atlas Anatomical Magnetic Resonance Imaging (MRI) Multi-Input CNN for molecular classification in breast cancer
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1