使用深度学习方法的SD-OCT图像分类

M. Awais, H. Müller, T. Tang, F. Mériaudeau
{"title":"使用深度学习方法的SD-OCT图像分类","authors":"M. Awais, H. Müller, T. Tang, F. Mériaudeau","doi":"10.1109/ICSIPA.2017.8120661","DOIUrl":null,"url":null,"abstract":"Diabetic Macular Edema (DME) is one of the many eye diseases that is commonly found in diabetic patients. If it is left untreated it may cause vision loss. This paper focuses on classification of abnormal and normal OCT (Optical Coherence Tomography) image volumes using a pre-trained CNN (Convolutional Neural Network). Using VGG16 (Visual Geometry Group), features are extracted at different layers of the network, e.g. before fully connected layer and after each fully connected layer. On the basis of these features classification was performed using different classifiers and results are higher than recently published work on the same dataset with an accuracy of 87.5%, with sensitivity and specificity being 93.5% and 81% respectively.","PeriodicalId":268112,"journal":{"name":"2017 IEEE International Conference on Signal and Image Processing Applications (ICSIPA)","volume":"94 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"59","resultStr":"{\"title\":\"Classification of SD-OCT images using a Deep learning approach\",\"authors\":\"M. Awais, H. Müller, T. Tang, F. Mériaudeau\",\"doi\":\"10.1109/ICSIPA.2017.8120661\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Diabetic Macular Edema (DME) is one of the many eye diseases that is commonly found in diabetic patients. If it is left untreated it may cause vision loss. This paper focuses on classification of abnormal and normal OCT (Optical Coherence Tomography) image volumes using a pre-trained CNN (Convolutional Neural Network). Using VGG16 (Visual Geometry Group), features are extracted at different layers of the network, e.g. before fully connected layer and after each fully connected layer. On the basis of these features classification was performed using different classifiers and results are higher than recently published work on the same dataset with an accuracy of 87.5%, with sensitivity and specificity being 93.5% and 81% respectively.\",\"PeriodicalId\":268112,\"journal\":{\"name\":\"2017 IEEE International Conference on Signal and Image Processing Applications (ICSIPA)\",\"volume\":\"94 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"59\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE International Conference on Signal and Image Processing Applications (ICSIPA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSIPA.2017.8120661\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Conference on Signal and Image Processing Applications (ICSIPA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSIPA.2017.8120661","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 59

摘要

糖尿病性黄斑水肿(DME)是糖尿病患者常见的多种眼病之一。如果不及时治疗,可能会导致视力丧失。本文主要研究了使用预训练的卷积神经网络对异常和正常OCT(光学相干断层扫描)图像体进行分类。使用VGG16 (Visual Geometry Group),在网络的不同层提取特征,例如在完全连接层之前和在每个完全连接层之后。在这些特征的基础上,使用不同的分类器进行分类,结果高于同一数据集上最近发表的工作,准确率为87.5%,灵敏度和特异性分别为93.5%和81%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Classification of SD-OCT images using a Deep learning approach
Diabetic Macular Edema (DME) is one of the many eye diseases that is commonly found in diabetic patients. If it is left untreated it may cause vision loss. This paper focuses on classification of abnormal and normal OCT (Optical Coherence Tomography) image volumes using a pre-trained CNN (Convolutional Neural Network). Using VGG16 (Visual Geometry Group), features are extracted at different layers of the network, e.g. before fully connected layer and after each fully connected layer. On the basis of these features classification was performed using different classifiers and results are higher than recently published work on the same dataset with an accuracy of 87.5%, with sensitivity and specificity being 93.5% and 81% respectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Enhanced forensic speaker verification using multi-run ICA in the presence of environmental noise and reverberation conditions A real-time multi-class multi-object tracker using YOLOv2 Hybrid neural network and regression tree ensemble pruned by simulated annealing for virtual flow metering application Hybrid DWT and MFCC feature warping for noisy forensic speaker verification in room reverberation A deep architecture for face recognition based on multiple feature extraction techniques
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1