无菌区监测与人工验证

Ajmal Shahbaz, Wahyono, K. Jo
{"title":"无菌区监测与人工验证","authors":"Ajmal Shahbaz, Wahyono, K. Jo","doi":"10.1109/HSI.2017.8004997","DOIUrl":null,"url":null,"abstract":"This paper proposes efficient real time method for sterile zone monitoring with human verification. The propose method consists of two main parts: Motion detection module and human verification module. The role of motion detection module is to segment out foreground object from background. Probabilistic Foreground Detector based on Gaussian Mixture Model(GMM) is used. Region of interest (ROI) obtained from motion detection module is fed into SVM classifier. SVM classifier is trained using HOG descriptor. The proposed method is tested on the standard datasets gives promising results.","PeriodicalId":355011,"journal":{"name":"2017 10th International Conference on Human System Interactions (HSI)","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Sterile zone monitoring with human verification\",\"authors\":\"Ajmal Shahbaz, Wahyono, K. Jo\",\"doi\":\"10.1109/HSI.2017.8004997\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes efficient real time method for sterile zone monitoring with human verification. The propose method consists of two main parts: Motion detection module and human verification module. The role of motion detection module is to segment out foreground object from background. Probabilistic Foreground Detector based on Gaussian Mixture Model(GMM) is used. Region of interest (ROI) obtained from motion detection module is fed into SVM classifier. SVM classifier is trained using HOG descriptor. The proposed method is tested on the standard datasets gives promising results.\",\"PeriodicalId\":355011,\"journal\":{\"name\":\"2017 10th International Conference on Human System Interactions (HSI)\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 10th International Conference on Human System Interactions (HSI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/HSI.2017.8004997\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 10th International Conference on Human System Interactions (HSI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HSI.2017.8004997","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

提出了一种高效的实时人工验证无菌区监测方法。该方法主要包括两个部分:运动检测模块和人体验证模块。运动检测模块的作用是从背景中分割出前景目标。采用基于高斯混合模型(GMM)的概率前景检测器。将运动检测模块得到的感兴趣区域(ROI)输入到SVM分类器中。使用HOG描述符训练SVM分类器。在标准数据集上对该方法进行了测试,结果令人满意。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Sterile zone monitoring with human verification
This paper proposes efficient real time method for sterile zone monitoring with human verification. The propose method consists of two main parts: Motion detection module and human verification module. The role of motion detection module is to segment out foreground object from background. Probabilistic Foreground Detector based on Gaussian Mixture Model(GMM) is used. Region of interest (ROI) obtained from motion detection module is fed into SVM classifier. SVM classifier is trained using HOG descriptor. The proposed method is tested on the standard datasets gives promising results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Text-to-speech of a talking robot for interactive speech training of hearing impaired Web and virtual reality as platforms to improve online education experiences Interacting with a conversational agent system for educational purposes in online courses Car plate recognition based on CNN using embedded system with GPU Comparative study of modern convolutional neural networks for smoke detection on image data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1