超大规模集成电路(VLSI)遗传布局算法解的表示

D. Zaporozhets, D. Zaruba, V. Kureichik
{"title":"超大规模集成电路(VLSI)遗传布局算法解的表示","authors":"D. Zaporozhets, D. Zaruba, V. Kureichik","doi":"10.1109/EWDTS.2014.7027053","DOIUrl":null,"url":null,"abstract":"The VLSI placement problem is presented in this article. A mechanism of representation of solutions for further genetic algorithm implementation is described. The proposed encoding algorithm is based on a placement tree and reverse Polish notation. The decoding algorithm is implemented in two stages: twinning of elements in macroblocks and calculation of real coordinates of elements. Experimental results show time-response characteristics of the proposed coding and decoding mechanisms. The time complexity of the encoding algorithm is represented by O(n) whereas the time complexity of the decoding algorithm is represented by O(n log n), where n is the number of elements.","PeriodicalId":272780,"journal":{"name":"Proceedings of IEEE East-West Design & Test Symposium (EWDTS 2014)","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":"{\"title\":\"Representation of solutions in genetic VLSI placement algorithms\",\"authors\":\"D. Zaporozhets, D. Zaruba, V. Kureichik\",\"doi\":\"10.1109/EWDTS.2014.7027053\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The VLSI placement problem is presented in this article. A mechanism of representation of solutions for further genetic algorithm implementation is described. The proposed encoding algorithm is based on a placement tree and reverse Polish notation. The decoding algorithm is implemented in two stages: twinning of elements in macroblocks and calculation of real coordinates of elements. Experimental results show time-response characteristics of the proposed coding and decoding mechanisms. The time complexity of the encoding algorithm is represented by O(n) whereas the time complexity of the decoding algorithm is represented by O(n log n), where n is the number of elements.\",\"PeriodicalId\":272780,\"journal\":{\"name\":\"Proceedings of IEEE East-West Design & Test Symposium (EWDTS 2014)\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"20\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of IEEE East-West Design & Test Symposium (EWDTS 2014)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EWDTS.2014.7027053\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of IEEE East-West Design & Test Symposium (EWDTS 2014)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EWDTS.2014.7027053","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

摘要

本文提出了超大规模集成电路的安装问题。描述了进一步实现遗传算法的解的表示机制。所提出的编码算法基于放置树和反向波兰表示法。解码算法分两个阶段实现:宏块中元素的孪生和元素实坐标的计算。实验结果显示了所提出的编码和解码机制的时间响应特性。编码算法的时间复杂度用O(n)表示,解码算法的时间复杂度用O(n log n)表示,其中n为元素个数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Representation of solutions in genetic VLSI placement algorithms
The VLSI placement problem is presented in this article. A mechanism of representation of solutions for further genetic algorithm implementation is described. The proposed encoding algorithm is based on a placement tree and reverse Polish notation. The decoding algorithm is implemented in two stages: twinning of elements in macroblocks and calculation of real coordinates of elements. Experimental results show time-response characteristics of the proposed coding and decoding mechanisms. The time complexity of the encoding algorithm is represented by O(n) whereas the time complexity of the decoding algorithm is represented by O(n log n), where n is the number of elements.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Communication with smart transformers in rural settings Analysis and Simulation of temperature-current rise in modern PCB traces Using Java optimized processor as an intellectual property core beside a RISC processor in FPGA Multichannel Fast Affine Projection algorithm with Gradient Adaptive Step-Size and fast computation of adaptive filter output signal Microwave selective amplifiers with paraphase output
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1