M. David Sarmiento, H. Tenhunen, Lirong Zheng, Majid Baghaei Nejad
{"title":"9.2pJ/脉冲UWB-IR发射机,振幅可调,用于0.18um CMOS的无线传感器标签","authors":"M. David Sarmiento, H. Tenhunen, Lirong Zheng, Majid Baghaei Nejad","doi":"10.1109/NORCHIP.2010.5669435","DOIUrl":null,"url":null,"abstract":"This paper presents a transmitter design for Ultra Wideband Impulse Radio (UWB-IR) communications. The design is targeted towards the implementation of passive Wireless Sensor Tags (WST) where micro-power consumption is required. The transmitter has been implemented in UMC 0.18µm CMOS and placed inside a QFN lead-less package. It complies with the FCC regulations for Pulse Rate Frequencies (PRF) up to 10MHz using OOK modulation. It is capable of adjusting the Power Spectral Emissions (PSE) modifying the transmitted pulse amplitude to always achieve the best BER/Power performance depending on the application demands. The power emission tunability has been validated implementing a complete communication link using a low sensitivity non-coherent energy receiver. Measurements show a maximum power consumption of 92uW@10MHz PRF having a maximum energy/pulse of 9.2 pJ.","PeriodicalId":292342,"journal":{"name":"NORCHIP 2010","volume":"66 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"A 9.2pJ/pulse UWB-IR transmitter with tunable amplitude for wireless sensor tags in 0.18um CMOS\",\"authors\":\"M. David Sarmiento, H. Tenhunen, Lirong Zheng, Majid Baghaei Nejad\",\"doi\":\"10.1109/NORCHIP.2010.5669435\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a transmitter design for Ultra Wideband Impulse Radio (UWB-IR) communications. The design is targeted towards the implementation of passive Wireless Sensor Tags (WST) where micro-power consumption is required. The transmitter has been implemented in UMC 0.18µm CMOS and placed inside a QFN lead-less package. It complies with the FCC regulations for Pulse Rate Frequencies (PRF) up to 10MHz using OOK modulation. It is capable of adjusting the Power Spectral Emissions (PSE) modifying the transmitted pulse amplitude to always achieve the best BER/Power performance depending on the application demands. The power emission tunability has been validated implementing a complete communication link using a low sensitivity non-coherent energy receiver. Measurements show a maximum power consumption of 92uW@10MHz PRF having a maximum energy/pulse of 9.2 pJ.\",\"PeriodicalId\":292342,\"journal\":{\"name\":\"NORCHIP 2010\",\"volume\":\"66 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-12-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"NORCHIP 2010\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NORCHIP.2010.5669435\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"NORCHIP 2010","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NORCHIP.2010.5669435","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A 9.2pJ/pulse UWB-IR transmitter with tunable amplitude for wireless sensor tags in 0.18um CMOS
This paper presents a transmitter design for Ultra Wideband Impulse Radio (UWB-IR) communications. The design is targeted towards the implementation of passive Wireless Sensor Tags (WST) where micro-power consumption is required. The transmitter has been implemented in UMC 0.18µm CMOS and placed inside a QFN lead-less package. It complies with the FCC regulations for Pulse Rate Frequencies (PRF) up to 10MHz using OOK modulation. It is capable of adjusting the Power Spectral Emissions (PSE) modifying the transmitted pulse amplitude to always achieve the best BER/Power performance depending on the application demands. The power emission tunability has been validated implementing a complete communication link using a low sensitivity non-coherent energy receiver. Measurements show a maximum power consumption of 92uW@10MHz PRF having a maximum energy/pulse of 9.2 pJ.