双阈值下GNSS欺骗信号的功率分配策略

Sen Huang, Shuxin Chen, Kun Chen, Zhuowei Liu, Jianhua Chen, Hao Wu
{"title":"双阈值下GNSS欺骗信号的功率分配策略","authors":"Sen Huang, Shuxin Chen, Kun Chen, Zhuowei Liu, Jianhua Chen, Hao Wu","doi":"10.1109/CPGPS.2017.8075110","DOIUrl":null,"url":null,"abstract":"The traditional GNSS spoofing signals power distribution strategy only considers availability and validity in single channel mode without multiple channel mode. Therefore, a new strategy based on acquisition and tracing performance threshold is proposed. The relationship between the signal acquisition/tracking performance and carrier-to-noise ratio (C/N0) is analyzed. Then the influence of spoofing signal power on C/N0 is also analyzed through taking cross-correlation interference into consideration. The optimal spoofing power is calculated by the strategy under the C/N0 constraints and corresponding objective functions to different spoofing signal detecting. Simulations show that spoofing signal injection will be realized if the multiple spoofing power is −143.8dBW and denial power is 158.86dBW or the minimum elevation spoofing power is −124.04dBW. The concealment of interference is enhanced when it deals with the wideband white noise detection.","PeriodicalId":340067,"journal":{"name":"2017 Forum on Cooperative Positioning and Service (CPGPS)","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A power distributing strategy of GNSS spoofing signal under dual-threshold\",\"authors\":\"Sen Huang, Shuxin Chen, Kun Chen, Zhuowei Liu, Jianhua Chen, Hao Wu\",\"doi\":\"10.1109/CPGPS.2017.8075110\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The traditional GNSS spoofing signals power distribution strategy only considers availability and validity in single channel mode without multiple channel mode. Therefore, a new strategy based on acquisition and tracing performance threshold is proposed. The relationship between the signal acquisition/tracking performance and carrier-to-noise ratio (C/N0) is analyzed. Then the influence of spoofing signal power on C/N0 is also analyzed through taking cross-correlation interference into consideration. The optimal spoofing power is calculated by the strategy under the C/N0 constraints and corresponding objective functions to different spoofing signal detecting. Simulations show that spoofing signal injection will be realized if the multiple spoofing power is −143.8dBW and denial power is 158.86dBW or the minimum elevation spoofing power is −124.04dBW. The concealment of interference is enhanced when it deals with the wideband white noise detection.\",\"PeriodicalId\":340067,\"journal\":{\"name\":\"2017 Forum on Cooperative Positioning and Service (CPGPS)\",\"volume\":\"38 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 Forum on Cooperative Positioning and Service (CPGPS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CPGPS.2017.8075110\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 Forum on Cooperative Positioning and Service (CPGPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CPGPS.2017.8075110","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

传统的GNSS欺骗信号功率分配策略只考虑单通道模式下的可用性和有效性,没有考虑多通道模式。为此,提出了一种基于采集和跟踪性能阈值的新策略。分析了信号采集/跟踪性能与载波噪声比(C/N0)之间的关系。然后考虑互相关干扰,分析了欺骗信号功率对C/N0的影响。针对不同的欺骗信号检测,在C/N0约束和相应的目标函数下,通过该策略计算出最优欺骗功率。仿真结果表明,当多重欺骗功率为−143.8dBW,拒绝功率为158.86dBW或最小俯角欺骗功率为−124.04dBW时,可以实现欺骗信号注入。在处理宽带白噪声检测时,增强了干扰的隐蔽性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A power distributing strategy of GNSS spoofing signal under dual-threshold
The traditional GNSS spoofing signals power distribution strategy only considers availability and validity in single channel mode without multiple channel mode. Therefore, a new strategy based on acquisition and tracing performance threshold is proposed. The relationship between the signal acquisition/tracking performance and carrier-to-noise ratio (C/N0) is analyzed. Then the influence of spoofing signal power on C/N0 is also analyzed through taking cross-correlation interference into consideration. The optimal spoofing power is calculated by the strategy under the C/N0 constraints and corresponding objective functions to different spoofing signal detecting. Simulations show that spoofing signal injection will be realized if the multiple spoofing power is −143.8dBW and denial power is 158.86dBW or the minimum elevation spoofing power is −124.04dBW. The concealment of interference is enhanced when it deals with the wideband white noise detection.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Research on underwater sound velocity calculation, error correction and positioning algorithms An optimal weighted least squares RAIM algorithm Survey on cyber security of CAV A position self-calibration method in multilateration The application of MEMS GPS receiver in APOD precise orbit determination
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1