降维的一致光谱方法

M. Kharouf, Tabea Rebafka, Nataliya Sokolovska
{"title":"降维的一致光谱方法","authors":"M. Kharouf, Tabea Rebafka, Nataliya Sokolovska","doi":"10.23919/EUSIPCO.2018.8553295","DOIUrl":null,"url":null,"abstract":"This paper addresses the problem of dimension reduction of noisy data, more precisely the challenge to determine the dimension of the subspace where the observed signal lives in. Based on results from random matrix theory, two novel estimators of the signal dimension are proposed in this paper. Consistency of the estimators is proved in the modern asymptotic regime, where the number of parameters grows proportionally with the sample size. Experimental results show that the novel estimators are robust to noise and, moreover, they give highly accurate results in settings where standard methods fail. We apply the novel dimension estimators to several life sciences benchmarks in the context of classification, and illustrate the improvements achieved by the new methods compared to the state-of-the-art approaches.","PeriodicalId":303069,"journal":{"name":"2018 26th European Signal Processing Conference (EUSIPCO)","volume":"51 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Consistent Spectral Methods for Dimensionality Reduction\",\"authors\":\"M. Kharouf, Tabea Rebafka, Nataliya Sokolovska\",\"doi\":\"10.23919/EUSIPCO.2018.8553295\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper addresses the problem of dimension reduction of noisy data, more precisely the challenge to determine the dimension of the subspace where the observed signal lives in. Based on results from random matrix theory, two novel estimators of the signal dimension are proposed in this paper. Consistency of the estimators is proved in the modern asymptotic regime, where the number of parameters grows proportionally with the sample size. Experimental results show that the novel estimators are robust to noise and, moreover, they give highly accurate results in settings where standard methods fail. We apply the novel dimension estimators to several life sciences benchmarks in the context of classification, and illustrate the improvements achieved by the new methods compared to the state-of-the-art approaches.\",\"PeriodicalId\":303069,\"journal\":{\"name\":\"2018 26th European Signal Processing Conference (EUSIPCO)\",\"volume\":\"51 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 26th European Signal Processing Conference (EUSIPCO)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/EUSIPCO.2018.8553295\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 26th European Signal Processing Conference (EUSIPCO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/EUSIPCO.2018.8553295","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文解决了噪声数据的降维问题,更准确地说,是确定观测信号所在子空间的维数的挑战。基于随机矩阵理论的结果,提出了两种新的信号维数估计方法。在现代渐近状态下,参数数量随样本容量成比例增长,证明了估计量的相合性。实验结果表明,新的估计器对噪声具有较强的鲁棒性,而且在标准方法无法实现的情况下给出了较高的精度。我们将新的维估计器应用于分类背景下的几个生命科学基准,并说明了与最先进的方法相比,新方法所取得的改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Consistent Spectral Methods for Dimensionality Reduction
This paper addresses the problem of dimension reduction of noisy data, more precisely the challenge to determine the dimension of the subspace where the observed signal lives in. Based on results from random matrix theory, two novel estimators of the signal dimension are proposed in this paper. Consistency of the estimators is proved in the modern asymptotic regime, where the number of parameters grows proportionally with the sample size. Experimental results show that the novel estimators are robust to noise and, moreover, they give highly accurate results in settings where standard methods fail. We apply the novel dimension estimators to several life sciences benchmarks in the context of classification, and illustrate the improvements achieved by the new methods compared to the state-of-the-art approaches.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Missing Sample Estimation Based on High-Order Sparse Linear Prediction for Audio Signals Multi-Shot Single Sensor Light Field Camera Using a Color Coded Mask Knowledge-Aided Normalized Iterative Hard Thresholding Algorithms for Sparse Recovery Two-Step Hybrid Multiuser Equalizer for Sub-Connected mmWave Massive MIMO SC-FDMA Systems How Much Will Tiny IoT Nodes Profit from Massive Base Station Arrays?
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1