基于动态规划的医学图像最优边缘检测算法

Bin Lee, Jia-yong Yan, T. Zhuang
{"title":"基于动态规划的医学图像最优边缘检测算法","authors":"Bin Lee, Jia-yong Yan, T. Zhuang","doi":"10.1109/MIAR.2001.930285","DOIUrl":null,"url":null,"abstract":"This paper explores a novel dynamic programming (DP) based optimal technique in ultrasound image (USI) edge detection, which is less constrained now than previous. Dynamic programming is an optimal approach in multistage decision-making. In an image segmentation system, we want to find a global optimal contour with connectedness and closeness. The DP algorithms process the object image to get the minimum cumulative cost matrix to tracing a global optimal edge. Combined with LUM nonlinear enhancement filter and Gaussian preprocessor, this method shows robustness on noisy image edge detection.","PeriodicalId":375408,"journal":{"name":"Proceedings International Workshop on Medical Imaging and Augmented Reality","volume":"216 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":"{\"title\":\"A dynamic programming based algorithm for optimal edge detection in medical images\",\"authors\":\"Bin Lee, Jia-yong Yan, T. Zhuang\",\"doi\":\"10.1109/MIAR.2001.930285\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper explores a novel dynamic programming (DP) based optimal technique in ultrasound image (USI) edge detection, which is less constrained now than previous. Dynamic programming is an optimal approach in multistage decision-making. In an image segmentation system, we want to find a global optimal contour with connectedness and closeness. The DP algorithms process the object image to get the minimum cumulative cost matrix to tracing a global optimal edge. Combined with LUM nonlinear enhancement filter and Gaussian preprocessor, this method shows robustness on noisy image edge detection.\",\"PeriodicalId\":375408,\"journal\":{\"name\":\"Proceedings International Workshop on Medical Imaging and Augmented Reality\",\"volume\":\"216 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-06-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings International Workshop on Medical Imaging and Augmented Reality\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MIAR.2001.930285\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings International Workshop on Medical Imaging and Augmented Reality","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MIAR.2001.930285","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

摘要

本文研究了一种新的基于动态规划的超声图像边缘检测优化方法,该方法比以往的方法具有更少的约束。动态规划是多阶段决策的最优方法。在图像分割系统中,我们希望找到一个具有连通性和接近性的全局最优轮廓。DP算法对目标图像进行处理,得到最小累积代价矩阵,以跟踪全局最优边缘。该方法结合LUM非线性增强滤波器和高斯预处理器,对噪声图像的边缘检测具有较好的鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A dynamic programming based algorithm for optimal edge detection in medical images
This paper explores a novel dynamic programming (DP) based optimal technique in ultrasound image (USI) edge detection, which is less constrained now than previous. Dynamic programming is an optimal approach in multistage decision-making. In an image segmentation system, we want to find a global optimal contour with connectedness and closeness. The DP algorithms process the object image to get the minimum cumulative cost matrix to tracing a global optimal edge. Combined with LUM nonlinear enhancement filter and Gaussian preprocessor, this method shows robustness on noisy image edge detection.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Template-matching approach to edge detection of volume data Level set methods and image segmentation Hybrid FEM for deformation of soft tissues in surgery simulation Segmentation and analysis of leg ulcers color images Development of a method to construct three-dimensional finite element models of thoracic aortic aneurysms from MRI images
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1