基于高斯映射的混沌粒子群神经网络的帕金森病识别

Hasan Koyuncu
{"title":"基于高斯映射的混沌粒子群神经网络的帕金森病识别","authors":"Hasan Koyuncu","doi":"10.1109/EnT47717.2019.9030560","DOIUrl":null,"url":null,"abstract":"In detection of Parkinson’s disease (PD), voice recordings are frequently appealed to reveal whether disease is available or not. The features extracted from these recordings are utilized as the input of classification methods. Herein, binary classification of features gains importance to accurately perform the PD detection. In this paper, we perform the classification of two well-known PD datasets including the features attained by recordings. Efficient hybrid classifiers are formed using the state-of-the-art optimization algorithms originated from particle swarm optimization (PSO). As an efficient classifier, neural network (NN) is determined as the main part of hybrid architecture. Sine map based chaotic PSO (SM-CPSO), dynamic weight PSO (DWPSO) and chaotic dynamic weight PSO (CDW-PSO) are considered to compare with Gauss map based CPSO (GMCPSO) on formation of hybrid classifiers and on classification of PD. For a detailed assessment, seven metrics (accuracy, AUC, sensitivity, specificity, g-mean, precision, f-measure) based comparison is realized, and 2-fold cross validation is handled to test the system. According to the results, GM-CPSO-NN achieves to remarkable performance among other hybrid methods and also outperforms to the recent literature studies. Consequently, a comprehensive study about PD recognition is realized, and a detailed comparison of hybrid NNs is presented on pattern classification.","PeriodicalId":288550,"journal":{"name":"2019 International Conference on Engineering and Telecommunication (EnT)","volume":"51 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Parkinson’s Disease Recognition using Gauss Map based Chaotic Particle Swarm-Neural Network\",\"authors\":\"Hasan Koyuncu\",\"doi\":\"10.1109/EnT47717.2019.9030560\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In detection of Parkinson’s disease (PD), voice recordings are frequently appealed to reveal whether disease is available or not. The features extracted from these recordings are utilized as the input of classification methods. Herein, binary classification of features gains importance to accurately perform the PD detection. In this paper, we perform the classification of two well-known PD datasets including the features attained by recordings. Efficient hybrid classifiers are formed using the state-of-the-art optimization algorithms originated from particle swarm optimization (PSO). As an efficient classifier, neural network (NN) is determined as the main part of hybrid architecture. Sine map based chaotic PSO (SM-CPSO), dynamic weight PSO (DWPSO) and chaotic dynamic weight PSO (CDW-PSO) are considered to compare with Gauss map based CPSO (GMCPSO) on formation of hybrid classifiers and on classification of PD. For a detailed assessment, seven metrics (accuracy, AUC, sensitivity, specificity, g-mean, precision, f-measure) based comparison is realized, and 2-fold cross validation is handled to test the system. According to the results, GM-CPSO-NN achieves to remarkable performance among other hybrid methods and also outperforms to the recent literature studies. Consequently, a comprehensive study about PD recognition is realized, and a detailed comparison of hybrid NNs is presented on pattern classification.\",\"PeriodicalId\":288550,\"journal\":{\"name\":\"2019 International Conference on Engineering and Telecommunication (EnT)\",\"volume\":\"51 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 International Conference on Engineering and Telecommunication (EnT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EnT47717.2019.9030560\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Engineering and Telecommunication (EnT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EnT47717.2019.9030560","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

在帕金森病(PD)的检测中,语音记录经常被用来揭示疾病是否可用。从这些录音中提取的特征被用作分类方法的输入。在此,特征的二值分类对于准确地进行PD检测具有重要意义。在本文中,我们对两个著名的PD数据集进行分类,包括通过记录获得的特征。基于粒子群优化(PSO)的优化算法,形成了高效的混合分类器。神经网络作为一种高效的分类器,被确定为混合结构的主要组成部分。考虑基于正弦映射的混沌粒子群算法(SM-CPSO)、动态权值粒子群算法(DWPSO)和混沌动态权值粒子群算法(CDW-PSO)在混合分类器的形成和PD分类方面与基于高斯映射的混沌粒子群算法(GMCPSO)进行比较。为了进行详细的评估,实现了基于七个指标(准确度、AUC、灵敏度、特异性、g-mean、精密度、f-measure)的比较,并处理了2次交叉验证来测试系统。结果表明,GM-CPSO-NN在其他混合方法中取得了显著的成绩,并且优于最近的文献研究。因此,对PD识别进行了全面的研究,并对混合神经网络在模式分类方面进行了详细的比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Parkinson’s Disease Recognition using Gauss Map based Chaotic Particle Swarm-Neural Network
In detection of Parkinson’s disease (PD), voice recordings are frequently appealed to reveal whether disease is available or not. The features extracted from these recordings are utilized as the input of classification methods. Herein, binary classification of features gains importance to accurately perform the PD detection. In this paper, we perform the classification of two well-known PD datasets including the features attained by recordings. Efficient hybrid classifiers are formed using the state-of-the-art optimization algorithms originated from particle swarm optimization (PSO). As an efficient classifier, neural network (NN) is determined as the main part of hybrid architecture. Sine map based chaotic PSO (SM-CPSO), dynamic weight PSO (DWPSO) and chaotic dynamic weight PSO (CDW-PSO) are considered to compare with Gauss map based CPSO (GMCPSO) on formation of hybrid classifiers and on classification of PD. For a detailed assessment, seven metrics (accuracy, AUC, sensitivity, specificity, g-mean, precision, f-measure) based comparison is realized, and 2-fold cross validation is handled to test the system. According to the results, GM-CPSO-NN achieves to remarkable performance among other hybrid methods and also outperforms to the recent literature studies. Consequently, a comprehensive study about PD recognition is realized, and a detailed comparison of hybrid NNs is presented on pattern classification.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A multi-functional method of QR code used during the process of indoor navigation Protocol for Secure and Reliable Data Transmission in MANET based on Modular Arithmetic Study of channel response estimation method based on theory of optimum noise immunity Optical Plasmon Sensor Based on Ellipsoidal Semiconductor Nanoparticles About Presicion of Underwater Vehicles Location Using Underwater Acoustic Modems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1