为获得复杂特征的高加工质量,对掩模尺寸和形状的选择进行了分析研究

Gaganpreet Singh, Bhawandeep Sharma, R. Kumar, J. Ramkumar, S. A. Ramakrishna
{"title":"为获得复杂特征的高加工质量,对掩模尺寸和形状的选择进行了分析研究","authors":"Gaganpreet Singh, Bhawandeep Sharma, R. Kumar, J. Ramkumar, S. A. Ramakrishna","doi":"10.1177/25165984231172007","DOIUrl":null,"url":null,"abstract":"In this article, an analytical study of the effect of the shape and size of the mask on the machining quality of complex shapes has been carried out. For this study, we considered square and circular masks of varying sizes with varying overlap for the machining of square, inclined, and circular features. Mask size varied from 1 to 20 mm, while overlap varied from 10% to 90%. The machining quality of the aforementioned features was evaluated by studying the unmachined area “An” (in the machining zone) and the machining time “Tm.” For machining a similar feature, it was observed that the square mask performed much better than the circular mask in minimizing the machining time. However, the circular mask is much more suitable for minimizing the unmachined area. For validation, the experiment was conducted to machine the inclined lines with square and circular shape masks with varying overlap percentages. The experimental results were found to be in good agreement with the analytically obtained results, with an error of 2.5%. This study is relevant for the industrial-scale manufacturing of complicated features using the mask projection approach in laser machining.","PeriodicalId":129806,"journal":{"name":"Journal of Micromanufacturing","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analytical study for the selection of mask size and shape for obtaining high machining quality of complex features\",\"authors\":\"Gaganpreet Singh, Bhawandeep Sharma, R. Kumar, J. Ramkumar, S. A. Ramakrishna\",\"doi\":\"10.1177/25165984231172007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article, an analytical study of the effect of the shape and size of the mask on the machining quality of complex shapes has been carried out. For this study, we considered square and circular masks of varying sizes with varying overlap for the machining of square, inclined, and circular features. Mask size varied from 1 to 20 mm, while overlap varied from 10% to 90%. The machining quality of the aforementioned features was evaluated by studying the unmachined area “An” (in the machining zone) and the machining time “Tm.” For machining a similar feature, it was observed that the square mask performed much better than the circular mask in minimizing the machining time. However, the circular mask is much more suitable for minimizing the unmachined area. For validation, the experiment was conducted to machine the inclined lines with square and circular shape masks with varying overlap percentages. The experimental results were found to be in good agreement with the analytically obtained results, with an error of 2.5%. This study is relevant for the industrial-scale manufacturing of complicated features using the mask projection approach in laser machining.\",\"PeriodicalId\":129806,\"journal\":{\"name\":\"Journal of Micromanufacturing\",\"volume\":\"48 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Micromanufacturing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/25165984231172007\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Micromanufacturing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/25165984231172007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文分析研究了掩模的形状和尺寸对复杂形状加工质量的影响。在这项研究中,我们考虑了不同尺寸和不同重叠的方形和圆形掩模,用于方形、倾斜和圆形特征的加工。掩模尺寸为1 ~ 20 mm,重叠度为10% ~ 90%。通过研究未加工区域An和加工时间Tm来评价上述特征的加工质量。对于加工类似的特征,观察到方形掩模比圆形掩模在最小化加工时间方面表现得更好。然而,圆形掩模更适合最小化未加工区域。为了验证该方法的有效性,分别用不同重叠比例的方形和圆形掩模加工斜线。实验结果与解析得到的结果吻合良好,误差为2.5%。本研究为激光加工中使用掩模投影方法进行复杂特征的工业规模制造提供了理论依据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Analytical study for the selection of mask size and shape for obtaining high machining quality of complex features
In this article, an analytical study of the effect of the shape and size of the mask on the machining quality of complex shapes has been carried out. For this study, we considered square and circular masks of varying sizes with varying overlap for the machining of square, inclined, and circular features. Mask size varied from 1 to 20 mm, while overlap varied from 10% to 90%. The machining quality of the aforementioned features was evaluated by studying the unmachined area “An” (in the machining zone) and the machining time “Tm.” For machining a similar feature, it was observed that the square mask performed much better than the circular mask in minimizing the machining time. However, the circular mask is much more suitable for minimizing the unmachined area. For validation, the experiment was conducted to machine the inclined lines with square and circular shape masks with varying overlap percentages. The experimental results were found to be in good agreement with the analytically obtained results, with an error of 2.5%. This study is relevant for the industrial-scale manufacturing of complicated features using the mask projection approach in laser machining.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Additive manufacturing in the COVID-19 pandemic: Equipment and challenges? Strain softening observed during nanoindentation of equimolar-ratio Co–Mn– Fe–Cr–Ni high entropy alloy Surface modification using nanostructures and nanocoating to combat the spread of bacteria and viruses: Recent development
and challenges A review on applications of molecular dynamics in additive manufacturing A review on applications of molecular dynamics in additive manufacturing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1