使用类似立体分类的光场深度图估计

F. Calderon, C. Parra, Cesar L. Nino
{"title":"使用类似立体分类的光场深度图估计","authors":"F. Calderon, C. Parra, Cesar L. Nino","doi":"10.1109/STSIVA.2014.7010131","DOIUrl":null,"url":null,"abstract":"The light field or LF is a function that describes the amount of light traveling in every direction (angular) through every point (spatial) in a scene, this LF can be captured in several ways, using arrays of cameras, or more recently using a single camera with an special lens, that allows the capture of angular and spatial information of light rays of a scene (LF). This recent camera implementation gives a different approach to find the dept of a scene using only a single camera. In order to estimate the depth, we describe a taxonomy, similar to the one used in stereo Depth-map algorithms. That consist in the creation of a cost tensor to represent the matching cost between different disparities, then, using a support weight window, aggregate the cost tensor, finally, using a winner-takes-all optimization algorithm, search for the best disparities. This paper explains in detail the several changes made to an stereo-like taxonomy, to be applied in a light field, and evaluate this algorithm using a recent database that for the first time, provides several ground-truth light fields, with a respective ground-truth depth map.","PeriodicalId":114554,"journal":{"name":"2014 XIX Symposium on Image, Signal Processing and Artificial Vision","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Depth map estimation in light fields using an stereo-like taxonomy\",\"authors\":\"F. Calderon, C. Parra, Cesar L. Nino\",\"doi\":\"10.1109/STSIVA.2014.7010131\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The light field or LF is a function that describes the amount of light traveling in every direction (angular) through every point (spatial) in a scene, this LF can be captured in several ways, using arrays of cameras, or more recently using a single camera with an special lens, that allows the capture of angular and spatial information of light rays of a scene (LF). This recent camera implementation gives a different approach to find the dept of a scene using only a single camera. In order to estimate the depth, we describe a taxonomy, similar to the one used in stereo Depth-map algorithms. That consist in the creation of a cost tensor to represent the matching cost between different disparities, then, using a support weight window, aggregate the cost tensor, finally, using a winner-takes-all optimization algorithm, search for the best disparities. This paper explains in detail the several changes made to an stereo-like taxonomy, to be applied in a light field, and evaluate this algorithm using a recent database that for the first time, provides several ground-truth light fields, with a respective ground-truth depth map.\",\"PeriodicalId\":114554,\"journal\":{\"name\":\"2014 XIX Symposium on Image, Signal Processing and Artificial Vision\",\"volume\":\"44 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 XIX Symposium on Image, Signal Processing and Artificial Vision\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/STSIVA.2014.7010131\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 XIX Symposium on Image, Signal Processing and Artificial Vision","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/STSIVA.2014.7010131","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

光场(LF)是描述在场景中每个方向(角度)通过每个点(空间)的光量的函数,这个LF可以通过几种方式捕获,使用相机阵列,或者最近使用带有特殊镜头的单个相机,可以捕获场景光线的角度和空间信息(LF)。最近的相机实现提供了一种不同的方法来查找场景的深度,仅使用单个相机。为了估计深度,我们描述了一种分类,类似于立体深度图算法中使用的分类。这包括创建一个代价张量来表示不同差异之间的匹配代价,然后,使用一个支持权重窗口,聚合代价张量,最后,使用赢者通吃的优化算法,搜索最佳差异。本文详细解释了将在光场中应用的类立体分类法所做的一些改变,并使用最近的数据库对该算法进行了评估,该数据库首次提供了几个地真光场,并提供了各自的地真深度图。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Depth map estimation in light fields using an stereo-like taxonomy
The light field or LF is a function that describes the amount of light traveling in every direction (angular) through every point (spatial) in a scene, this LF can be captured in several ways, using arrays of cameras, or more recently using a single camera with an special lens, that allows the capture of angular and spatial information of light rays of a scene (LF). This recent camera implementation gives a different approach to find the dept of a scene using only a single camera. In order to estimate the depth, we describe a taxonomy, similar to the one used in stereo Depth-map algorithms. That consist in the creation of a cost tensor to represent the matching cost between different disparities, then, using a support weight window, aggregate the cost tensor, finally, using a winner-takes-all optimization algorithm, search for the best disparities. This paper explains in detail the several changes made to an stereo-like taxonomy, to be applied in a light field, and evaluate this algorithm using a recent database that for the first time, provides several ground-truth light fields, with a respective ground-truth depth map.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Motor imagery classification using feature relevance analysis: An Emotiv-based BCI system Causality analysis of P300 recordings focused on the localization of active brain areas Novel spectral characteristics of the electrical current waveform to quantifying power quality on LED lamps Comparison of preprocessing methods for diffusion tensor estimation in brain imaging Pattern recognition of hypernasality in voice of patients with Cleft and Lip Palate
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1