基于混合整数优化和深度学习的到达方向估计中的歧义解决

J. Goodman, Daniel Salmond, Clayton G. Davis, C. Acosta
{"title":"基于混合整数优化和深度学习的到达方向估计中的歧义解决","authors":"J. Goodman, Daniel Salmond, Clayton G. Davis, C. Acosta","doi":"10.1109/NAECON46414.2019.9057944","DOIUrl":null,"url":null,"abstract":"In this paper we present two novel approaches to unambiguously estimate the direction of arrival (DOA) of an RF source by an array of receive antennas whose positions can take-on any arbitrary geometry. The first approach employs a simple constrained integer optimization, while the second approach employs deep learning. In both approaches the impact of imperfect array calibration on the performance of DOA estimation is quantified. We demonstrate in Monte Carlo simulations that both approaches are capable of achieving super-resolution performance under imperfect array calibration conditions. It was found that the constrained integer optimization outperforms deep learning when one has an accurate physics model of the receiver imperfections, however deep learning was more robust to significant calibration errors.","PeriodicalId":193529,"journal":{"name":"2019 IEEE National Aerospace and Electronics Conference (NAECON)","volume":"71 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Ambiguity Resolution in Direction of Arrival Estimation using Mixed Integer Optimization and Deep Learning\",\"authors\":\"J. Goodman, Daniel Salmond, Clayton G. Davis, C. Acosta\",\"doi\":\"10.1109/NAECON46414.2019.9057944\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we present two novel approaches to unambiguously estimate the direction of arrival (DOA) of an RF source by an array of receive antennas whose positions can take-on any arbitrary geometry. The first approach employs a simple constrained integer optimization, while the second approach employs deep learning. In both approaches the impact of imperfect array calibration on the performance of DOA estimation is quantified. We demonstrate in Monte Carlo simulations that both approaches are capable of achieving super-resolution performance under imperfect array calibration conditions. It was found that the constrained integer optimization outperforms deep learning when one has an accurate physics model of the receiver imperfections, however deep learning was more robust to significant calibration errors.\",\"PeriodicalId\":193529,\"journal\":{\"name\":\"2019 IEEE National Aerospace and Electronics Conference (NAECON)\",\"volume\":\"71 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE National Aerospace and Electronics Conference (NAECON)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NAECON46414.2019.9057944\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE National Aerospace and Electronics Conference (NAECON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NAECON46414.2019.9057944","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

在本文中,我们提出了两种新的方法来明确估计射频源的到达方向(DOA)通过阵列接收天线,其位置可以采取任何任意几何形状。第一种方法采用简单的约束整数优化,而第二种方法采用深度学习。在这两种方法中,都量化了阵列不完全标定对DOA估计性能的影响。我们在蒙特卡罗模拟中证明,这两种方法都能够在不完美的阵列校准条件下实现超分辨率性能。研究发现,当具有精确的接收器缺陷物理模型时,约束整数优化优于深度学习,但深度学习对显著的校准误差更具鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Ambiguity Resolution in Direction of Arrival Estimation using Mixed Integer Optimization and Deep Learning
In this paper we present two novel approaches to unambiguously estimate the direction of arrival (DOA) of an RF source by an array of receive antennas whose positions can take-on any arbitrary geometry. The first approach employs a simple constrained integer optimization, while the second approach employs deep learning. In both approaches the impact of imperfect array calibration on the performance of DOA estimation is quantified. We demonstrate in Monte Carlo simulations that both approaches are capable of achieving super-resolution performance under imperfect array calibration conditions. It was found that the constrained integer optimization outperforms deep learning when one has an accurate physics model of the receiver imperfections, however deep learning was more robust to significant calibration errors.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Physical Cyber-Security of SCADA Systems Cluster-Based Hungarian Approach to Task Allocation for Unmanned Aerial Vehicles Privacy Preserving Medium Access Control Protocol for wireless Body Area Sensor Networks Gaussian Beam Propagation Through Turbulent Atmosphere using Second-Order Split-Step Algorithm A generalized equivalent circuit model for large-scale battery packs with cell-to-cell variation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1