你就是你所攻击的:打破加密保护的S7协议

Wael Alsabbagh, P. Langendörfer
{"title":"你就是你所攻击的:打破加密保护的S7协议","authors":"Wael Alsabbagh, P. Langendörfer","doi":"10.1109/WFCS57264.2023.10144251","DOIUrl":null,"url":null,"abstract":"S7 protocol defines an appropriate format for exchanging messages between SIMATIC S7 PLCs and their corresponding engineering software i.e., TIA Portal. Recently, Siemens has provided its newer PLC models and their proprietary S7 protocols with a very developed and sophisticated integrity check mechanism to protect them from various exploits e.g., replay attacks. This paper addresses exactly this point, and investigates the security of the most developed integrity check mechanism that the newest S7CommPlus protocol version implements. Our results showed that the latest S7 PLC models as well as their related protocols are still vulnerable. We found that adversaries can manipulate two hashes that play a significant role in generating keys and bytes for the encryption processes implemented in the S7CommPlus protocol. This allows to reproduce S7 packets and conduct several attacks that eventually impact the operation of the target PLC and the entire physical process it controls. To validate our findings, we test all the attack scenarios presented in this work on a cryptographically protected S7 PLC from the 1500 family which uses the S7CommPlusV3 protocol.","PeriodicalId":345607,"journal":{"name":"2023 IEEE 19th International Conference on Factory Communication Systems (WFCS)","volume":"185 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"You Are What You Attack: Breaking the Cryptographically Protected S7 Protocol\",\"authors\":\"Wael Alsabbagh, P. Langendörfer\",\"doi\":\"10.1109/WFCS57264.2023.10144251\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"S7 protocol defines an appropriate format for exchanging messages between SIMATIC S7 PLCs and their corresponding engineering software i.e., TIA Portal. Recently, Siemens has provided its newer PLC models and their proprietary S7 protocols with a very developed and sophisticated integrity check mechanism to protect them from various exploits e.g., replay attacks. This paper addresses exactly this point, and investigates the security of the most developed integrity check mechanism that the newest S7CommPlus protocol version implements. Our results showed that the latest S7 PLC models as well as their related protocols are still vulnerable. We found that adversaries can manipulate two hashes that play a significant role in generating keys and bytes for the encryption processes implemented in the S7CommPlus protocol. This allows to reproduce S7 packets and conduct several attacks that eventually impact the operation of the target PLC and the entire physical process it controls. To validate our findings, we test all the attack scenarios presented in this work on a cryptographically protected S7 PLC from the 1500 family which uses the S7CommPlusV3 protocol.\",\"PeriodicalId\":345607,\"journal\":{\"name\":\"2023 IEEE 19th International Conference on Factory Communication Systems (WFCS)\",\"volume\":\"185 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE 19th International Conference on Factory Communication Systems (WFCS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WFCS57264.2023.10144251\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE 19th International Conference on Factory Communication Systems (WFCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WFCS57264.2023.10144251","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

S7协议定义了SIMATIC S7 plc与其相应的工程软件(即TIA Portal)之间交换消息的适当格式。最近,西门子为其较新的PLC型号及其专有的S7协议提供了一个非常发达和复杂的完整性检查机制,以保护它们免受各种漏洞的攻击,例如重播攻击。本文正是针对这一点,研究了最新版本的S7CommPlus协议所实现的最先进的完整性校验机制的安全性。我们的研究结果表明,最新的S7 PLC型号及其相关协议仍然存在漏洞。我们发现攻击者可以操纵两个哈希值,这两个哈希值在为S7CommPlus协议中实现的加密过程生成密钥和字节方面发挥重要作用。这允许复制S7数据包并进行几次攻击,最终影响目标PLC的操作和它控制的整个物理过程。为了验证我们的发现,我们在使用S7CommPlusV3协议的1500系列加密保护的S7 PLC上测试了本工作中提出的所有攻击场景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
You Are What You Attack: Breaking the Cryptographically Protected S7 Protocol
S7 protocol defines an appropriate format for exchanging messages between SIMATIC S7 PLCs and their corresponding engineering software i.e., TIA Portal. Recently, Siemens has provided its newer PLC models and their proprietary S7 protocols with a very developed and sophisticated integrity check mechanism to protect them from various exploits e.g., replay attacks. This paper addresses exactly this point, and investigates the security of the most developed integrity check mechanism that the newest S7CommPlus protocol version implements. Our results showed that the latest S7 PLC models as well as their related protocols are still vulnerable. We found that adversaries can manipulate two hashes that play a significant role in generating keys and bytes for the encryption processes implemented in the S7CommPlus protocol. This allows to reproduce S7 packets and conduct several attacks that eventually impact the operation of the target PLC and the entire physical process it controls. To validate our findings, we test all the attack scenarios presented in this work on a cryptographically protected S7 PLC from the 1500 family which uses the S7CommPlusV3 protocol.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Authenticated UWB-Based Positioning of Passive Drones 60 GHz mmWave Signal Propagation Characterization in Workshop and Steel Industry Empirical Delay and Doppler Profiles for Industrial Wireless Channel Models TSN Scheduler Benchmarking Scheduling for Time-Critical Applications Utilizing TCP in Software-Based 802.1Qbv Wireless TSN
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1