{"title":"个性化上下文感知张量分解在线游戏预测","authors":"Julie Jiang, Kristina Lerman, Emilio Ferrara","doi":"10.1109/ICDMW51313.2020.00048","DOIUrl":null,"url":null,"abstract":"Individual behavior and decisions are substantially influenced by their contexts, such as location, environment, and time. Changes along these dimensions can be readily observed in Multiplayer Online Battle Arena games (MOBA), where players face different in-game settings for each match and are subject to frequent game patches. Existing methods utilizing contextual information generalize the effect of a context over the entire population, but contextual information tailored to each individual can be more effective. To achieve this, we present the Neural Individualized Context-aware Embeddings (NICE) model for predicting user performance and game outcomes. Our proposed method identifies individual behavioral differences in different contexts by learning latent representations of users and contexts through non-negative tensor factorization. Using a dataset from the MOBA game League of Legends, we demonstrate that our model substantially improves the prediction of winning outcome, individual user performance, and user engagement.","PeriodicalId":426846,"journal":{"name":"2020 International Conference on Data Mining Workshops (ICDMW)","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Individualized Context-Aware Tensor Factorization for Online Games Predictions\",\"authors\":\"Julie Jiang, Kristina Lerman, Emilio Ferrara\",\"doi\":\"10.1109/ICDMW51313.2020.00048\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Individual behavior and decisions are substantially influenced by their contexts, such as location, environment, and time. Changes along these dimensions can be readily observed in Multiplayer Online Battle Arena games (MOBA), where players face different in-game settings for each match and are subject to frequent game patches. Existing methods utilizing contextual information generalize the effect of a context over the entire population, but contextual information tailored to each individual can be more effective. To achieve this, we present the Neural Individualized Context-aware Embeddings (NICE) model for predicting user performance and game outcomes. Our proposed method identifies individual behavioral differences in different contexts by learning latent representations of users and contexts through non-negative tensor factorization. Using a dataset from the MOBA game League of Legends, we demonstrate that our model substantially improves the prediction of winning outcome, individual user performance, and user engagement.\",\"PeriodicalId\":426846,\"journal\":{\"name\":\"2020 International Conference on Data Mining Workshops (ICDMW)\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 International Conference on Data Mining Workshops (ICDMW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDMW51313.2020.00048\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 International Conference on Data Mining Workshops (ICDMW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDMW51313.2020.00048","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Individualized Context-Aware Tensor Factorization for Online Games Predictions
Individual behavior and decisions are substantially influenced by their contexts, such as location, environment, and time. Changes along these dimensions can be readily observed in Multiplayer Online Battle Arena games (MOBA), where players face different in-game settings for each match and are subject to frequent game patches. Existing methods utilizing contextual information generalize the effect of a context over the entire population, but contextual information tailored to each individual can be more effective. To achieve this, we present the Neural Individualized Context-aware Embeddings (NICE) model for predicting user performance and game outcomes. Our proposed method identifies individual behavioral differences in different contexts by learning latent representations of users and contexts through non-negative tensor factorization. Using a dataset from the MOBA game League of Legends, we demonstrate that our model substantially improves the prediction of winning outcome, individual user performance, and user engagement.