模拟视网膜植入物的自动感知增强

Johannes Steffen, Georg Hille, Klaus D. Tönnies
{"title":"模拟视网膜植入物的自动感知增强","authors":"Johannes Steffen, Georg Hille, Klaus D. Tönnies","doi":"10.5220/0007695409080914","DOIUrl":null,"url":null,"abstract":"This work addresses the automatic enhancement of visual percepts of virtual patients with retinal implants. Specifically, we render the task as an image transformation problem within an artificial neural network. The neurophysiological model of (Nanduri et al., 2012) was implemented as a tensor network to simulate a virtual patient’s visual percept and used together with an image transformation network in order to perform end-to-end learning on an image reconstruction and a classification task. The image reconstruction task was evaluated using the MNIST data set and yielded plausible results w.r.t. the learned transformations while halving the dissimilarity (mean-squared-error) of an input image to its simulated visual percept. Furthermore, the classification task was evaluated on the cifar-10 data set. Experiments show, that classification accuracy increases by approximately 12.9% when a suitable input image transformation is learned.","PeriodicalId":410036,"journal":{"name":"International Conference on Pattern Recognition Applications and Methods","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Automatic Perception Enhancement for Simulated Retinal Implants\",\"authors\":\"Johannes Steffen, Georg Hille, Klaus D. Tönnies\",\"doi\":\"10.5220/0007695409080914\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work addresses the automatic enhancement of visual percepts of virtual patients with retinal implants. Specifically, we render the task as an image transformation problem within an artificial neural network. The neurophysiological model of (Nanduri et al., 2012) was implemented as a tensor network to simulate a virtual patient’s visual percept and used together with an image transformation network in order to perform end-to-end learning on an image reconstruction and a classification task. The image reconstruction task was evaluated using the MNIST data set and yielded plausible results w.r.t. the learned transformations while halving the dissimilarity (mean-squared-error) of an input image to its simulated visual percept. Furthermore, the classification task was evaluated on the cifar-10 data set. Experiments show, that classification accuracy increases by approximately 12.9% when a suitable input image transformation is learned.\",\"PeriodicalId\":410036,\"journal\":{\"name\":\"International Conference on Pattern Recognition Applications and Methods\",\"volume\":\"44 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-02-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conference on Pattern Recognition Applications and Methods\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5220/0007695409080914\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Pattern Recognition Applications and Methods","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5220/0007695409080914","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

这项工作解决了视网膜植入的虚拟患者视觉感知的自动增强。具体来说,我们将该任务呈现为人工神经网络中的图像变换问题。(Nanduri et al., 2012)的神经生理学模型被实现为一个张量网络来模拟虚拟患者的视觉感知,并与图像变换网络一起使用,以便对图像重建和分类任务进行端到端学习。使用MNIST数据集对图像重建任务进行了评估,并在将输入图像与其模拟视觉感知的不相似性(均方误差)减半的同时,在学习转换的基础上产生了可信的结果。此外,在cifar-10数据集上对分类任务进行了评估。实验表明,当学习到合适的输入图像变换后,分类准确率提高了约12.9%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Automatic Perception Enhancement for Simulated Retinal Implants
This work addresses the automatic enhancement of visual percepts of virtual patients with retinal implants. Specifically, we render the task as an image transformation problem within an artificial neural network. The neurophysiological model of (Nanduri et al., 2012) was implemented as a tensor network to simulate a virtual patient’s visual percept and used together with an image transformation network in order to perform end-to-end learning on an image reconstruction and a classification task. The image reconstruction task was evaluated using the MNIST data set and yielded plausible results w.r.t. the learned transformations while halving the dissimilarity (mean-squared-error) of an input image to its simulated visual percept. Furthermore, the classification task was evaluated on the cifar-10 data set. Experiments show, that classification accuracy increases by approximately 12.9% when a suitable input image transformation is learned.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
PatchSVD: A Non-Uniform SVD-Based Image Compression Algorithm On Spectrogram Analysis in a Multiple Classifier Fusion Framework for Power Grid Classification Using Electric Network Frequency Semantic Properties of cosine based bias scores for word embeddings Double Trouble? Impact and Detection of Duplicates in Face Image Datasets Detecting Brain Tumors through Multimodal Neural Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1