缓解SRAM细胞NBTI的信号概率控制

Yuji Kunitake, Toshinori Sato, H. Yasuura
{"title":"缓解SRAM细胞NBTI的信号概率控制","authors":"Yuji Kunitake, Toshinori Sato, H. Yasuura","doi":"10.1109/ISQED.2010.5450504","DOIUrl":null,"url":null,"abstract":"Negative Bias Temperature Instability (NBTI) is one of the major reliability problems in advanced technologies. NBTI causes threshold voltage degradation in a PMOS transistor which is biased to negative voltage. In an SRAM cell, due to NBTI, threshold voltage degrades in the load PMOS transistors. The degradation has the impact on Static Noise Margin (SNM), which is a measure of read stability of a 6-T SRAM cell. In this paper, we discuss the relationship between NBTI degradation in an SRAM cell and the signal probability. This is because, it is the key parameter of NBTI degradation. Based on the observations, we propose a novel cell-flipping technique in order to make signal probability close to 50%. The long cell-flipping period leads to threshold voltage degradation as large as the original case where the cell-flipping technique is not applied. Thus, we employ the short flipping period to the cell-flipping technique without any stall of operations. In consequence of applying the cell-flipping technique to a register file, we can relieve threshold voltage degradation by 70% after the SRAM cell is used for 3 years.","PeriodicalId":369046,"journal":{"name":"2010 11th International Symposium on Quality Electronic Design (ISQED)","volume":"54 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"28","resultStr":"{\"title\":\"Signal probability control for relieving NBTI in SRAM cells\",\"authors\":\"Yuji Kunitake, Toshinori Sato, H. Yasuura\",\"doi\":\"10.1109/ISQED.2010.5450504\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Negative Bias Temperature Instability (NBTI) is one of the major reliability problems in advanced technologies. NBTI causes threshold voltage degradation in a PMOS transistor which is biased to negative voltage. In an SRAM cell, due to NBTI, threshold voltage degrades in the load PMOS transistors. The degradation has the impact on Static Noise Margin (SNM), which is a measure of read stability of a 6-T SRAM cell. In this paper, we discuss the relationship between NBTI degradation in an SRAM cell and the signal probability. This is because, it is the key parameter of NBTI degradation. Based on the observations, we propose a novel cell-flipping technique in order to make signal probability close to 50%. The long cell-flipping period leads to threshold voltage degradation as large as the original case where the cell-flipping technique is not applied. Thus, we employ the short flipping period to the cell-flipping technique without any stall of operations. In consequence of applying the cell-flipping technique to a register file, we can relieve threshold voltage degradation by 70% after the SRAM cell is used for 3 years.\",\"PeriodicalId\":369046,\"journal\":{\"name\":\"2010 11th International Symposium on Quality Electronic Design (ISQED)\",\"volume\":\"54 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-03-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"28\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 11th International Symposium on Quality Electronic Design (ISQED)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISQED.2010.5450504\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 11th International Symposium on Quality Electronic Design (ISQED)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISQED.2010.5450504","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 28

摘要

负偏置温度不稳定性(NBTI)是先进技术中主要的可靠性问题之一。NBTI导致PMOS晶体管的阈值电压退化,使其偏向负电压。在SRAM单元中,由于NBTI,负载PMOS晶体管的阈值电压降低。这种退化对静态噪声裕度(SNM)有影响,SNM是衡量6-T SRAM单元读取稳定性的指标。本文讨论了SRAM单元中NBTI退化与信号概率的关系。这是因为它是NBTI降解的关键参数。在此基础上,我们提出了一种新的细胞翻转技术,使信号概率接近50%。由于电池翻转周期长,导致阈值电压下降的幅度与不使用电池翻转技术的情况一样大。因此,我们采用了短翻转周期的细胞翻转技术,没有任何操作失速。由于将单元翻转技术应用于寄存器文件,我们可以在SRAM单元使用3年后将阈值电压降低70%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Signal probability control for relieving NBTI in SRAM cells
Negative Bias Temperature Instability (NBTI) is one of the major reliability problems in advanced technologies. NBTI causes threshold voltage degradation in a PMOS transistor which is biased to negative voltage. In an SRAM cell, due to NBTI, threshold voltage degrades in the load PMOS transistors. The degradation has the impact on Static Noise Margin (SNM), which is a measure of read stability of a 6-T SRAM cell. In this paper, we discuss the relationship between NBTI degradation in an SRAM cell and the signal probability. This is because, it is the key parameter of NBTI degradation. Based on the observations, we propose a novel cell-flipping technique in order to make signal probability close to 50%. The long cell-flipping period leads to threshold voltage degradation as large as the original case where the cell-flipping technique is not applied. Thus, we employ the short flipping period to the cell-flipping technique without any stall of operations. In consequence of applying the cell-flipping technique to a register file, we can relieve threshold voltage degradation by 70% after the SRAM cell is used for 3 years.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A low power clock network placement framework Body bias driven design synthesis for optimum performance per area Adaptive task allocation for multiprocessor SoCs Reliability analysis of analog circuits by lifetime yield prediction using worst-case distance degradation rate Low power clock gates optimization for clock tree distribution
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1