{"title":"边缘计算中的网络预测分析","authors":"Stefanos Nikolaou, C. Anagnostopoulos, D. Pezaros","doi":"10.1109/WD.2019.8734267","DOIUrl":null,"url":null,"abstract":"Edge-centric predictive analytics methodologies use real-time model caching to significantly reduce the communication overhead. We investigate an approach of using different regression techniques at the edge as caching models. Our methodology reports on an edge-centric mechanism to automatically decide when to update the parameters of the cached models to a central location (data center). Through experimentation, we showcase the trade off between accuracy and communication overhead and conclude that for all the experimented regression models, a lower percentage of the cached models should be sent to the data center to significantly decrease the communication overhead.","PeriodicalId":432101,"journal":{"name":"2019 Wireless Days (WD)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"In-network Predictive Analytics in Edge Computing\",\"authors\":\"Stefanos Nikolaou, C. Anagnostopoulos, D. Pezaros\",\"doi\":\"10.1109/WD.2019.8734267\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Edge-centric predictive analytics methodologies use real-time model caching to significantly reduce the communication overhead. We investigate an approach of using different regression techniques at the edge as caching models. Our methodology reports on an edge-centric mechanism to automatically decide when to update the parameters of the cached models to a central location (data center). Through experimentation, we showcase the trade off between accuracy and communication overhead and conclude that for all the experimented regression models, a lower percentage of the cached models should be sent to the data center to significantly decrease the communication overhead.\",\"PeriodicalId\":432101,\"journal\":{\"name\":\"2019 Wireless Days (WD)\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 Wireless Days (WD)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WD.2019.8734267\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 Wireless Days (WD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WD.2019.8734267","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Edge-centric predictive analytics methodologies use real-time model caching to significantly reduce the communication overhead. We investigate an approach of using different regression techniques at the edge as caching models. Our methodology reports on an edge-centric mechanism to automatically decide when to update the parameters of the cached models to a central location (data center). Through experimentation, we showcase the trade off between accuracy and communication overhead and conclude that for all the experimented regression models, a lower percentage of the cached models should be sent to the data center to significantly decrease the communication overhead.