基于仿生光流的自主避障控制

E. Moya-Albor, S. L. Coronel, Hiram Ponce, J. Brieva, Rodrigo Chávez-Domínguez, Alexis E. Guadarrama-Muñoz
{"title":"基于仿生光流的自主避障控制","authors":"E. Moya-Albor, S. L. Coronel, Hiram Ponce, J. Brieva, Rodrigo Chávez-Domínguez, Alexis E. Guadarrama-Muñoz","doi":"10.1109/ICMEAE.2019.00011","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a new methodology for autonomous obstacle avoidance control using a bio-inspired optical flow estimation. The main difference with other methods is that we use an image model inspired by the human vision system to define the constraints in the optical flow formulation which includes a Hermite transform (HT) and a perceptive mask. We use a physical robot platform to test the control algorithm, where due to the structure of the chassis a forward, reverse and turn movements were defined. The robot has a RBG camera to capture images of the path and then calculate optical flow estimation. To define velocity and direction robot response we propose a fuzzy controller. Finally, we made some experiments to demonstrate the performance of control navigation, and how responds algorithm using HT and a perceptive mask.","PeriodicalId":422872,"journal":{"name":"2019 International Conference on Mechatronics, Electronics and Automotive Engineering (ICMEAE)","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Bio-inspired Optical Flow-based Autonomous Obstacle Avoidance Control\",\"authors\":\"E. Moya-Albor, S. L. Coronel, Hiram Ponce, J. Brieva, Rodrigo Chávez-Domínguez, Alexis E. Guadarrama-Muñoz\",\"doi\":\"10.1109/ICMEAE.2019.00011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a new methodology for autonomous obstacle avoidance control using a bio-inspired optical flow estimation. The main difference with other methods is that we use an image model inspired by the human vision system to define the constraints in the optical flow formulation which includes a Hermite transform (HT) and a perceptive mask. We use a physical robot platform to test the control algorithm, where due to the structure of the chassis a forward, reverse and turn movements were defined. The robot has a RBG camera to capture images of the path and then calculate optical flow estimation. To define velocity and direction robot response we propose a fuzzy controller. Finally, we made some experiments to demonstrate the performance of control navigation, and how responds algorithm using HT and a perceptive mask.\",\"PeriodicalId\":422872,\"journal\":{\"name\":\"2019 International Conference on Mechatronics, Electronics and Automotive Engineering (ICMEAE)\",\"volume\":\"49 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 International Conference on Mechatronics, Electronics and Automotive Engineering (ICMEAE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMEAE.2019.00011\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Mechatronics, Electronics and Automotive Engineering (ICMEAE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMEAE.2019.00011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文提出了一种基于仿生光流估计的自主避障控制新方法。与其他方法的主要区别在于,我们使用受人类视觉系统启发的图像模型来定义光流公式中的约束,包括赫米特变换(HT)和感知掩模。我们使用物理机器人平台来测试控制算法,其中由于底盘的结构,定义了向前,反向和转弯运动。机器人有一个RBG相机捕捉路径图像,然后计算光流估计。为了定义机器人的速度和方向响应,我们提出了一个模糊控制器。最后,我们做了一些实验来验证控制导航的性能,以及使用HT和感知掩模的响应算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Bio-inspired Optical Flow-based Autonomous Obstacle Avoidance Control
In this paper, we propose a new methodology for autonomous obstacle avoidance control using a bio-inspired optical flow estimation. The main difference with other methods is that we use an image model inspired by the human vision system to define the constraints in the optical flow formulation which includes a Hermite transform (HT) and a perceptive mask. We use a physical robot platform to test the control algorithm, where due to the structure of the chassis a forward, reverse and turn movements were defined. The robot has a RBG camera to capture images of the path and then calculate optical flow estimation. To define velocity and direction robot response we propose a fuzzy controller. Finally, we made some experiments to demonstrate the performance of control navigation, and how responds algorithm using HT and a perceptive mask.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Maximum entropy model applied to Reliability Centered Maintenance scheme for replaceable systems. Design and 3D printed implementation of a microgripper actuated by a piezoelectric stack ICMEAE 2019 Index A Comparison of Feature Extractors for Panorama Stitching in an Autonomous Car Architecture GABOT: Garbage Autonomous Collector for Indoors at Low Cost
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1