树突结构图像模型参数识别技术的发展

R. Paringer, M. Boori, Y. Donon, A. Kupriyanov, D. Kirsh, Kravtsova Natalia
{"title":"树突结构图像模型参数识别技术的发展","authors":"R. Paringer, M. Boori, Y. Donon, A. Kupriyanov, D. Kirsh, Kravtsova Natalia","doi":"10.1109/ICFSP.2018.8552052","DOIUrl":null,"url":null,"abstract":"This work aims to increase the reliability of dendritic crystallogram’s images classification. Crystallographic methods are used for medical diagnosis and we propose here to improve the reliability of their classification through an improved description of de dendritic structures’ features. In this paper, we use the parameters of the mathematical model describing objects with dendritic structure. We developed a technology of parameters identification from a model image of dendritic structures, that was then implemented through the use of geometric and statistical features, together with a nearest neighbor classification algorithm.","PeriodicalId":355222,"journal":{"name":"2018 4th International Conference on Frontiers of Signal Processing (ICFSP)","volume":"104 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Development of Technology for the Identification of Model Parameters for Dendritic Structures Images\",\"authors\":\"R. Paringer, M. Boori, Y. Donon, A. Kupriyanov, D. Kirsh, Kravtsova Natalia\",\"doi\":\"10.1109/ICFSP.2018.8552052\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work aims to increase the reliability of dendritic crystallogram’s images classification. Crystallographic methods are used for medical diagnosis and we propose here to improve the reliability of their classification through an improved description of de dendritic structures’ features. In this paper, we use the parameters of the mathematical model describing objects with dendritic structure. We developed a technology of parameters identification from a model image of dendritic structures, that was then implemented through the use of geometric and statistical features, together with a nearest neighbor classification algorithm.\",\"PeriodicalId\":355222,\"journal\":{\"name\":\"2018 4th International Conference on Frontiers of Signal Processing (ICFSP)\",\"volume\":\"104 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 4th International Conference on Frontiers of Signal Processing (ICFSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICFSP.2018.8552052\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 4th International Conference on Frontiers of Signal Processing (ICFSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICFSP.2018.8552052","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本工作旨在提高树突晶体图图像分类的可靠性。晶体学方法用于医学诊断,我们建议通过改进枝晶结构特征的描述来提高其分类的可靠性。在本文中,我们使用数学模型的参数来描述具有树枝状结构的物体。我们开发了一种从树突结构模型图像中识别参数的技术,然后通过使用几何和统计特征以及最近邻分类算法来实现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Development of Technology for the Identification of Model Parameters for Dendritic Structures Images
This work aims to increase the reliability of dendritic crystallogram’s images classification. Crystallographic methods are used for medical diagnosis and we propose here to improve the reliability of their classification through an improved description of de dendritic structures’ features. In this paper, we use the parameters of the mathematical model describing objects with dendritic structure. We developed a technology of parameters identification from a model image of dendritic structures, that was then implemented through the use of geometric and statistical features, together with a nearest neighbor classification algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
On-body Sensing and Signal Analysis for User Experience Recognition in Human-Machine Interaction Objective Approach of 3G/4G Networks Indoor RF Coverage Assessment Statistical Compressive Sensing for Efficient Signal Reconstruction and Classification Towards Empowering Cyber Attack Resiliency Using Steganography Filtering Nonuniformly Sampled Grid-Based Signals
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1