4H和6H-SiC场效应晶体管的数值模拟

Hans-Erik Nilsson, Kent Bertilsson, E. Dubaric, M. Hjelm
{"title":"4H和6H-SiC场效应晶体管的数值模拟","authors":"Hans-Erik Nilsson, Kent Bertilsson, E. Dubaric, M. Hjelm","doi":"10.1106/152451102024432","DOIUrl":null,"url":null,"abstract":"Silicon Carbide is a very interesting semiconductor material for high temperature, high frequency, and high power applications. The main reasons are its high saturation velocity, large thermal conductivity, high Schottky barriers, and high breakdown voltages. High quality 4H-SiC and 6H-SiC polytype substrates and epitaxial layers are commercially available today. An additional advantage of SiC is the native oxide that allows fabrication of MOS devices. A large effort has been devoted towards the development of high performance devices in SiC. The largest success has been for unipolar devices like Schottky diodes and different kinds of MESFETs. MOSFETs have also been fabricated in both 4H- and 6H-SiC. Unfortunately, the MOSFET performance was found to be much worse than expected, due to a very low surface mobility. Nevertheless, the technology developed is very interesting and includes possible large scale integration of digital circuits operating at very high temperatures. In this work we present numerical simulations of the device performance of different Field Effect Transistors (FETs). Both full band Monte Carlo simulations and macroscopic modeling using the drift-diffusion approach have been utilized in this work. The Monte Carlo simulations have been used to extract transport parameters and to evaluate the macroscopic models in a device configuration.","PeriodicalId":315832,"journal":{"name":"3rd International Conference 'Novel Applications of Wide Bandgap Layers' Abstract Book (Cat. No.01EX500)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Numerical simulation of field effect transistors in 4H and 6H-SiC\",\"authors\":\"Hans-Erik Nilsson, Kent Bertilsson, E. Dubaric, M. Hjelm\",\"doi\":\"10.1106/152451102024432\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Silicon Carbide is a very interesting semiconductor material for high temperature, high frequency, and high power applications. The main reasons are its high saturation velocity, large thermal conductivity, high Schottky barriers, and high breakdown voltages. High quality 4H-SiC and 6H-SiC polytype substrates and epitaxial layers are commercially available today. An additional advantage of SiC is the native oxide that allows fabrication of MOS devices. A large effort has been devoted towards the development of high performance devices in SiC. The largest success has been for unipolar devices like Schottky diodes and different kinds of MESFETs. MOSFETs have also been fabricated in both 4H- and 6H-SiC. Unfortunately, the MOSFET performance was found to be much worse than expected, due to a very low surface mobility. Nevertheless, the technology developed is very interesting and includes possible large scale integration of digital circuits operating at very high temperatures. In this work we present numerical simulations of the device performance of different Field Effect Transistors (FETs). Both full band Monte Carlo simulations and macroscopic modeling using the drift-diffusion approach have been utilized in this work. The Monte Carlo simulations have been used to extract transport parameters and to evaluate the macroscopic models in a device configuration.\",\"PeriodicalId\":315832,\"journal\":{\"name\":\"3rd International Conference 'Novel Applications of Wide Bandgap Layers' Abstract Book (Cat. No.01EX500)\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"3rd International Conference 'Novel Applications of Wide Bandgap Layers' Abstract Book (Cat. No.01EX500)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1106/152451102024432\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"3rd International Conference 'Novel Applications of Wide Bandgap Layers' Abstract Book (Cat. No.01EX500)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1106/152451102024432","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

碳化硅是一种非常有趣的半导体材料,适用于高温、高频和高功率应用。其主要原因是饱和速度高、导热系数大、肖特基势垒高、击穿电压高。高质量的4H-SiC和6H-SiC多型衬底和外延层目前已商品化。SiC的另一个优点是其天然氧化物可用于制造MOS器件。在高性能碳化硅器件的开发上已经投入了大量的努力。最大的成功是单极器件,如肖特基二极管和不同种类的mesfet。在4H-和6H-SiC中也制备了mosfet。不幸的是,由于表面迁移率非常低,MOSFET的性能比预期的要差得多。然而,这项技术的发展非常有趣,包括在高温下工作的数字电路的大规模集成。在这项工作中,我们给出了不同场效应晶体管(fet)器件性能的数值模拟。全波段蒙特卡罗模拟和宏观建模使用漂移扩散方法已经在这项工作中使用。蒙特卡罗模拟已被用于提取输运参数和评估宏观模型在一个设备配置。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Numerical simulation of field effect transistors in 4H and 6H-SiC
Silicon Carbide is a very interesting semiconductor material for high temperature, high frequency, and high power applications. The main reasons are its high saturation velocity, large thermal conductivity, high Schottky barriers, and high breakdown voltages. High quality 4H-SiC and 6H-SiC polytype substrates and epitaxial layers are commercially available today. An additional advantage of SiC is the native oxide that allows fabrication of MOS devices. A large effort has been devoted towards the development of high performance devices in SiC. The largest success has been for unipolar devices like Schottky diodes and different kinds of MESFETs. MOSFETs have also been fabricated in both 4H- and 6H-SiC. Unfortunately, the MOSFET performance was found to be much worse than expected, due to a very low surface mobility. Nevertheless, the technology developed is very interesting and includes possible large scale integration of digital circuits operating at very high temperatures. In this work we present numerical simulations of the device performance of different Field Effect Transistors (FETs). Both full band Monte Carlo simulations and macroscopic modeling using the drift-diffusion approach have been utilized in this work. The Monte Carlo simulations have been used to extract transport parameters and to evaluate the macroscopic models in a device configuration.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Radiotherapy dosimetry: a novel application for polycrystalline diamond thin films New carbon based material layers for medical application Depositing of diamond-like films by plasma jets Nanocrystalline diamond films for cutting tools Ion beam nucleation of diamond
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1