GPGPU的浪涌电流感知电源门控开关设计

Hadi Zamani, Devashree Tripathy, A. Jahanshahi, Daniel Wong
{"title":"GPGPU的浪涌电流感知电源门控开关设计","authors":"Hadi Zamani, Devashree Tripathy, A. Jahanshahi, Daniel Wong","doi":"10.1109/nas51552.2021.9605434","DOIUrl":null,"url":null,"abstract":"The leakage energy of GPGPU can be reduced by power gating the idle logic or undervolting the storage structures; however, the performance and reliability of the system degrades due to large wake up time and inrush current at time of activation. In this paper, we thoroughly analyze the realistic Break-Even Time (BET) and inrush current for various components in GPGPU architecture considering the recent design of multi-modal Power Gating Switch (PGS). Then, we introduce a new PGS which covers the current PGS drawbacks. Our redesigned PGS is carefully tailored to minimize the inrush current and BET. GPGPU-Sim simulation results for various applications, show that, with incorporating the proposed PGS into GPGPU-Sim, we can save leakage energy up to 82%, 38%, and 60% for register files, integer units, and floating units respectively.","PeriodicalId":135930,"journal":{"name":"2021 IEEE International Conference on Networking, Architecture and Storage (NAS)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ICAP: Designing Inrush Current Aware Power Gating Switch for GPGPU\",\"authors\":\"Hadi Zamani, Devashree Tripathy, A. Jahanshahi, Daniel Wong\",\"doi\":\"10.1109/nas51552.2021.9605434\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The leakage energy of GPGPU can be reduced by power gating the idle logic or undervolting the storage structures; however, the performance and reliability of the system degrades due to large wake up time and inrush current at time of activation. In this paper, we thoroughly analyze the realistic Break-Even Time (BET) and inrush current for various components in GPGPU architecture considering the recent design of multi-modal Power Gating Switch (PGS). Then, we introduce a new PGS which covers the current PGS drawbacks. Our redesigned PGS is carefully tailored to minimize the inrush current and BET. GPGPU-Sim simulation results for various applications, show that, with incorporating the proposed PGS into GPGPU-Sim, we can save leakage energy up to 82%, 38%, and 60% for register files, integer units, and floating units respectively.\",\"PeriodicalId\":135930,\"journal\":{\"name\":\"2021 IEEE International Conference on Networking, Architecture and Storage (NAS)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE International Conference on Networking, Architecture and Storage (NAS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/nas51552.2021.9605434\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on Networking, Architecture and Storage (NAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/nas51552.2021.9605434","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

通过对空闲逻辑进行电源门控或对存储结构进行欠压,可以降低GPGPU的泄漏能量;但是,由于唤醒时间和激活时的浪涌电流大,系统的性能和可靠性下降。本文结合当前多模态功率门控开关(PGS)的设计,深入分析了GPGPU架构中各元件的实际损益平衡时间(BET)和浪涌电流。然后,我们介绍了一种新的PGS,它涵盖了当前PGS的缺点。我们重新设计的PGS经过精心定制,以最大限度地减少浪涌电流和BET。GPGPU-Sim在各种应用中的仿真结果表明,将所提出的PGS集成到GPGPU-Sim中,对于寄存器文件、整数单元和浮动单元,分别可以节省82%、38%和60%的泄漏能量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
ICAP: Designing Inrush Current Aware Power Gating Switch for GPGPU
The leakage energy of GPGPU can be reduced by power gating the idle logic or undervolting the storage structures; however, the performance and reliability of the system degrades due to large wake up time and inrush current at time of activation. In this paper, we thoroughly analyze the realistic Break-Even Time (BET) and inrush current for various components in GPGPU architecture considering the recent design of multi-modal Power Gating Switch (PGS). Then, we introduce a new PGS which covers the current PGS drawbacks. Our redesigned PGS is carefully tailored to minimize the inrush current and BET. GPGPU-Sim simulation results for various applications, show that, with incorporating the proposed PGS into GPGPU-Sim, we can save leakage energy up to 82%, 38%, and 60% for register files, integer units, and floating units respectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
NVSwap: Latency-Aware Paging using Non-Volatile Main Memory Deflection-Aware Routing Algorithm in Network on Chip against Soft Errors and Crosstalk Faults PLMC: A Predictable Tail Latency Mode Coordinator for Shared NVMe SSD with Multiple Hosts Efficient NVM Crash Consistency by Mitigating Resource Contention Characterizing AI Model Inference Applications Running in the SGX Environment
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1