摘要:HEF调度算法的初步性能评价

C. CarlosA.Rincon, A. Cheng
{"title":"摘要:HEF调度算法的初步性能评价","authors":"C. CarlosA.Rincon, A. Cheng","doi":"10.1109/RTAS.2016.7461351","DOIUrl":null,"url":null,"abstract":"Summary form only given. The purpose of this paper is to analyze the performance of the Highest Entropy First (HEF) scheduling algorithm for real-time tasks. The contributions of this paper are: · Generate multiple task sets by implementing the programs from the Seoul National University (SNU) real-time benchmark in Wind River Workbench 3.3 to calculate the WCET and generating the periods by using a linear programming solution aiming to maximize the utilization of the system based on a predefined hyper-period. We implemented the SNU programs (sqrt.c, fibcall.c, crc.c, minver.c and select.c) on a server with an Intel i7-3770 processor running at 3.4 GHz, with 16 GB of RAM and 2 TB hard drive using Wind River Workbench 3.3 to calculate the worst case execution time (WCET). We run each program 100 times to average the results. We created 4 task sets with 2, 3, 4, and 5 tasks respectively. For each task set we used 100 ms as the hyper-period to calculate the periods of the tasks. We implemented a system with implicit deadlines. · Measure the performance of HEF algorithm to schedule real-time tasks using as metrics the number of context switches and deadline-miss ratio. The results from the preliminary performance evaluation show that the number of context switches is directly proportional to the number of tasks in the task set. For the deadline-miss ratio, HEF was able to schedule all the task sets without missing any deadline. Further analysis must be made to confirm that the deadline-miss ratio depends on the utilization of the system (U ≤ 1 = no deadline misses). The HEF algorithm has some similarities with the earliest deadline first algorithm (EDF), therefore we propose as future work to compare the performance of HEF against EDF using the task sets generated by the methodology proposed in this paper.","PeriodicalId":338179,"journal":{"name":"2016 IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS)","volume":"210 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Poster Abstract: Preliminary Performance Evaluation of HEF Scheduling Algorithm\",\"authors\":\"C. CarlosA.Rincon, A. Cheng\",\"doi\":\"10.1109/RTAS.2016.7461351\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Summary form only given. The purpose of this paper is to analyze the performance of the Highest Entropy First (HEF) scheduling algorithm for real-time tasks. The contributions of this paper are: · Generate multiple task sets by implementing the programs from the Seoul National University (SNU) real-time benchmark in Wind River Workbench 3.3 to calculate the WCET and generating the periods by using a linear programming solution aiming to maximize the utilization of the system based on a predefined hyper-period. We implemented the SNU programs (sqrt.c, fibcall.c, crc.c, minver.c and select.c) on a server with an Intel i7-3770 processor running at 3.4 GHz, with 16 GB of RAM and 2 TB hard drive using Wind River Workbench 3.3 to calculate the worst case execution time (WCET). We run each program 100 times to average the results. We created 4 task sets with 2, 3, 4, and 5 tasks respectively. For each task set we used 100 ms as the hyper-period to calculate the periods of the tasks. We implemented a system with implicit deadlines. · Measure the performance of HEF algorithm to schedule real-time tasks using as metrics the number of context switches and deadline-miss ratio. The results from the preliminary performance evaluation show that the number of context switches is directly proportional to the number of tasks in the task set. For the deadline-miss ratio, HEF was able to schedule all the task sets without missing any deadline. Further analysis must be made to confirm that the deadline-miss ratio depends on the utilization of the system (U ≤ 1 = no deadline misses). The HEF algorithm has some similarities with the earliest deadline first algorithm (EDF), therefore we propose as future work to compare the performance of HEF against EDF using the task sets generated by the methodology proposed in this paper.\",\"PeriodicalId\":338179,\"journal\":{\"name\":\"2016 IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS)\",\"volume\":\"210 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RTAS.2016.7461351\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RTAS.2016.7461351","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

只提供摘要形式。本文的目的是分析最高熵优先(HEF)调度算法对实时任务的性能。本文的贡献是:·通过在风河工作台3.3中实现来自首尔国立大学(SNU)实时基准的程序来生成多个任务集,以计算WCET,并通过使用线性规划解决方案生成周期,旨在基于预定义的超周期最大化系统利用率。我们在一台运行频率为3.4 GHz、内存为16gb、硬盘为2tb的Intel i7-3770服务器上实现了SNU程序(sqrt.c、fibcall.c、crc.c、minver.c和select.c),使用Wind River Workbench 3.3计算最坏情况执行时间(WCET)。我们将每个程序运行100次来计算结果的平均值。我们创建了4个任务集,分别包含2、3、4和5个任务。对于每个任务集,我们使用100毫秒作为超周期来计算任务的周期。我们执行了一个带有隐式截止日期的系统。·衡量HEF算法调度实时任务的性能,使用上下文切换次数和截止日期错过率作为度量标准。初步的性能评估结果表明,上下文切换的次数与任务集中的任务数量成正比。对于截止日期-错过比率,HEF能够调度所有任务集而不会错过任何截止日期。必须进一步分析,以确认截止日期-错过比率取决于系统的利用率(U≤1 =没有截止日期错过)。HEF算法与最早截止日期优先算法(EDF)有一些相似之处,因此我们建议在未来的工作中使用本文提出的方法生成的任务集来比较HEF和EDF的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Poster Abstract: Preliminary Performance Evaluation of HEF Scheduling Algorithm
Summary form only given. The purpose of this paper is to analyze the performance of the Highest Entropy First (HEF) scheduling algorithm for real-time tasks. The contributions of this paper are: · Generate multiple task sets by implementing the programs from the Seoul National University (SNU) real-time benchmark in Wind River Workbench 3.3 to calculate the WCET and generating the periods by using a linear programming solution aiming to maximize the utilization of the system based on a predefined hyper-period. We implemented the SNU programs (sqrt.c, fibcall.c, crc.c, minver.c and select.c) on a server with an Intel i7-3770 processor running at 3.4 GHz, with 16 GB of RAM and 2 TB hard drive using Wind River Workbench 3.3 to calculate the worst case execution time (WCET). We run each program 100 times to average the results. We created 4 task sets with 2, 3, 4, and 5 tasks respectively. For each task set we used 100 ms as the hyper-period to calculate the periods of the tasks. We implemented a system with implicit deadlines. · Measure the performance of HEF algorithm to schedule real-time tasks using as metrics the number of context switches and deadline-miss ratio. The results from the preliminary performance evaluation show that the number of context switches is directly proportional to the number of tasks in the task set. For the deadline-miss ratio, HEF was able to schedule all the task sets without missing any deadline. Further analysis must be made to confirm that the deadline-miss ratio depends on the utilization of the system (U ≤ 1 = no deadline misses). The HEF algorithm has some similarities with the earliest deadline first algorithm (EDF), therefore we propose as future work to compare the performance of HEF against EDF using the task sets generated by the methodology proposed in this paper.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Trading Cores for Memory Bandwidth in Real-Time Systems A Kernel for Energy-Neutral Real-Time Systems with Mixed Criticalities Poster Abstract: Scheduling Multi-Threaded Tasks to Reduce Intra-Task Cache Contention Demo Abstract: Predictable SoC Architecture Based on COTS Multi-Core TaskShuffler: A Schedule Randomization Protocol for Obfuscation against Timing Inference Attacks in Real-Time Systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1