{"title":"非平衡二元分类的Bagging和Boosting分类性能研究进展","authors":"Yashasvi Singhal, Ayushi Jain, Shreya Batra, Yash Varshney, Megha Rathi","doi":"10.1109/IADCC.2018.8692138","DOIUrl":null,"url":null,"abstract":"Quite a few times when the problem of study involves binary classification we are dealt with a situation of unbalanced class labels; the negative class often dominates the positive class leading to the problem that the model was not able to learn enough complexities to correctly classify the label which are lower in comparison. The Bagging and boosting classifiers in recent times have gained in popularity due to its robustness against the unbalanced class labels, both uses the notion of ensemble to generalize the model and predict on the unseen data. Through this paper we aim to explore the improvement in the classification performance by bagging and boosting classifiers on an unbalanced binary classification dataset.","PeriodicalId":365713,"journal":{"name":"2018 IEEE 8th International Advance Computing Conference (IACC)","volume":"371 2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"Review of Bagging and Boosting Classification Performance on Unbalanced Binary Classification\",\"authors\":\"Yashasvi Singhal, Ayushi Jain, Shreya Batra, Yash Varshney, Megha Rathi\",\"doi\":\"10.1109/IADCC.2018.8692138\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Quite a few times when the problem of study involves binary classification we are dealt with a situation of unbalanced class labels; the negative class often dominates the positive class leading to the problem that the model was not able to learn enough complexities to correctly classify the label which are lower in comparison. The Bagging and boosting classifiers in recent times have gained in popularity due to its robustness against the unbalanced class labels, both uses the notion of ensemble to generalize the model and predict on the unseen data. Through this paper we aim to explore the improvement in the classification performance by bagging and boosting classifiers on an unbalanced binary classification dataset.\",\"PeriodicalId\":365713,\"journal\":{\"name\":\"2018 IEEE 8th International Advance Computing Conference (IACC)\",\"volume\":\"371 2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE 8th International Advance Computing Conference (IACC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IADCC.2018.8692138\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 8th International Advance Computing Conference (IACC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IADCC.2018.8692138","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Review of Bagging and Boosting Classification Performance on Unbalanced Binary Classification
Quite a few times when the problem of study involves binary classification we are dealt with a situation of unbalanced class labels; the negative class often dominates the positive class leading to the problem that the model was not able to learn enough complexities to correctly classify the label which are lower in comparison. The Bagging and boosting classifiers in recent times have gained in popularity due to its robustness against the unbalanced class labels, both uses the notion of ensemble to generalize the model and predict on the unseen data. Through this paper we aim to explore the improvement in the classification performance by bagging and boosting classifiers on an unbalanced binary classification dataset.