Chenning Li, Hanqing Guo, Shuai Tong, Xiao Zeng, Zhichao Cao, Mi Zhang, Qiben Yan, Li Xiao, Jiliang Wang, Yunhao Liu
{"title":"利用神经增强解调实现超低信噪比LoRa通信","authors":"Chenning Li, Hanqing Guo, Shuai Tong, Xiao Zeng, Zhichao Cao, Mi Zhang, Qiben Yan, Li Xiao, Jiliang Wang, Yunhao Liu","doi":"10.1145/3485730.3485928","DOIUrl":null,"url":null,"abstract":"Low-Power Wide-Area Networks (LPWANs) are an emerging Internet-of-Things (IoT) paradigm marked by low-power and long-distance communication. Among them, LoRa is widely deployed for its unique characteristics and open-source technology. By adopting the Chirp Spread Spectrum (CSS) modulation, LoRa enables low signal-to-noise ratio (SNR) communication. However, the standard demodulation method does not fully exploit the properties of chirp signals, thus yields a sub-optimal SNR threshold under which the decoding fails. Consequently, the communication range and energy consumption have to be compromised for robust transmission. This paper presents NELoRa, a neural-enhanced LoRa demodulation method, exploiting the feature abstraction ability of deep learning to support ultra-low SNR LoRa communication. Taking the spectrogram of both amplitude and phase as input, we first design a mask-enabled Deep Neural Network (DNN) filter that extracts multi-dimension features to capture clean chirp symbols. Second, we develop a spectrogram-based DNN decoder to decode these chirp symbols accurately. Finally, we propose a generic packet demodulation system by incorporating a method that generates high-quality chirp symbols from received signals. We implement and evaluate NELoRa on both indoor and campus-scale outdoor testbeds. The results show that NELoRa achieves 1.84-2.35 dB SNR gains and extends the battery life up to 272% (~0.38-1.51 years) in average for various LoRa configurations.","PeriodicalId":356322,"journal":{"name":"Proceedings of the 19th ACM Conference on Embedded Networked Sensor Systems","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"55","resultStr":"{\"title\":\"NELoRa: Towards Ultra-low SNR LoRa Communication with Neural-enhanced Demodulation\",\"authors\":\"Chenning Li, Hanqing Guo, Shuai Tong, Xiao Zeng, Zhichao Cao, Mi Zhang, Qiben Yan, Li Xiao, Jiliang Wang, Yunhao Liu\",\"doi\":\"10.1145/3485730.3485928\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Low-Power Wide-Area Networks (LPWANs) are an emerging Internet-of-Things (IoT) paradigm marked by low-power and long-distance communication. Among them, LoRa is widely deployed for its unique characteristics and open-source technology. By adopting the Chirp Spread Spectrum (CSS) modulation, LoRa enables low signal-to-noise ratio (SNR) communication. However, the standard demodulation method does not fully exploit the properties of chirp signals, thus yields a sub-optimal SNR threshold under which the decoding fails. Consequently, the communication range and energy consumption have to be compromised for robust transmission. This paper presents NELoRa, a neural-enhanced LoRa demodulation method, exploiting the feature abstraction ability of deep learning to support ultra-low SNR LoRa communication. Taking the spectrogram of both amplitude and phase as input, we first design a mask-enabled Deep Neural Network (DNN) filter that extracts multi-dimension features to capture clean chirp symbols. Second, we develop a spectrogram-based DNN decoder to decode these chirp symbols accurately. Finally, we propose a generic packet demodulation system by incorporating a method that generates high-quality chirp symbols from received signals. We implement and evaluate NELoRa on both indoor and campus-scale outdoor testbeds. The results show that NELoRa achieves 1.84-2.35 dB SNR gains and extends the battery life up to 272% (~0.38-1.51 years) in average for various LoRa configurations.\",\"PeriodicalId\":356322,\"journal\":{\"name\":\"Proceedings of the 19th ACM Conference on Embedded Networked Sensor Systems\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"55\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 19th ACM Conference on Embedded Networked Sensor Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3485730.3485928\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 19th ACM Conference on Embedded Networked Sensor Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3485730.3485928","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
NELoRa: Towards Ultra-low SNR LoRa Communication with Neural-enhanced Demodulation
Low-Power Wide-Area Networks (LPWANs) are an emerging Internet-of-Things (IoT) paradigm marked by low-power and long-distance communication. Among them, LoRa is widely deployed for its unique characteristics and open-source technology. By adopting the Chirp Spread Spectrum (CSS) modulation, LoRa enables low signal-to-noise ratio (SNR) communication. However, the standard demodulation method does not fully exploit the properties of chirp signals, thus yields a sub-optimal SNR threshold under which the decoding fails. Consequently, the communication range and energy consumption have to be compromised for robust transmission. This paper presents NELoRa, a neural-enhanced LoRa demodulation method, exploiting the feature abstraction ability of deep learning to support ultra-low SNR LoRa communication. Taking the spectrogram of both amplitude and phase as input, we first design a mask-enabled Deep Neural Network (DNN) filter that extracts multi-dimension features to capture clean chirp symbols. Second, we develop a spectrogram-based DNN decoder to decode these chirp symbols accurately. Finally, we propose a generic packet demodulation system by incorporating a method that generates high-quality chirp symbols from received signals. We implement and evaluate NELoRa on both indoor and campus-scale outdoor testbeds. The results show that NELoRa achieves 1.84-2.35 dB SNR gains and extends the battery life up to 272% (~0.38-1.51 years) in average for various LoRa configurations.