基于相对小波双谱特征的酒精性脑电信号人工神经网络分类

Prima Dewi Purnamasari, A. A. P. Ratna, B. Kusumoputro
{"title":"基于相对小波双谱特征的酒精性脑电信号人工神经网络分类","authors":"Prima Dewi Purnamasari, A. A. P. Ratna, B. Kusumoputro","doi":"10.1109/QIR.2017.8168473","DOIUrl":null,"url":null,"abstract":"This paper proposes a novel relative wavelet bispectrum (RWB) approach for EEG signal feature extraction method to differentiate the signal between the alcoholic over the non-alcoholic subjects. Firstly, the EEG signal is calculated for its autocorrelation frequencies as the basic step in the bispectrum calculation. Then, the discrete wavelet transform (DWT) is applied substituting the FFT which usually is used in the bispectrum calculation. Lastly, the relative value of each frequency band is calculated for both the approximation and the details parts, producing the RWB. The proposed methodology is implemented in an alcoholic automated detection system using 1200 data samples from UCI EEG Database for alcoholism. Based on the experiments, the setting value of lag in the autocorrelation calculation was evidently very influential on the recognition rate obtained, i.e. the maximum value for the lag was the best. Using cross validation, the highest results from RWB feature extraction method with ANN classifier achieved about 90% recognition rate.","PeriodicalId":225743,"journal":{"name":"2017 15th International Conference on Quality in Research (QiR) : International Symposium on Electrical and Computer Engineering","volume":"419 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Relative wavelet bispectrum feature for alcoholic EEG signal classification using artificial neural network\",\"authors\":\"Prima Dewi Purnamasari, A. A. P. Ratna, B. Kusumoputro\",\"doi\":\"10.1109/QIR.2017.8168473\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a novel relative wavelet bispectrum (RWB) approach for EEG signal feature extraction method to differentiate the signal between the alcoholic over the non-alcoholic subjects. Firstly, the EEG signal is calculated for its autocorrelation frequencies as the basic step in the bispectrum calculation. Then, the discrete wavelet transform (DWT) is applied substituting the FFT which usually is used in the bispectrum calculation. Lastly, the relative value of each frequency band is calculated for both the approximation and the details parts, producing the RWB. The proposed methodology is implemented in an alcoholic automated detection system using 1200 data samples from UCI EEG Database for alcoholism. Based on the experiments, the setting value of lag in the autocorrelation calculation was evidently very influential on the recognition rate obtained, i.e. the maximum value for the lag was the best. Using cross validation, the highest results from RWB feature extraction method with ANN classifier achieved about 90% recognition rate.\",\"PeriodicalId\":225743,\"journal\":{\"name\":\"2017 15th International Conference on Quality in Research (QiR) : International Symposium on Electrical and Computer Engineering\",\"volume\":\"419 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 15th International Conference on Quality in Research (QiR) : International Symposium on Electrical and Computer Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/QIR.2017.8168473\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 15th International Conference on Quality in Research (QiR) : International Symposium on Electrical and Computer Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/QIR.2017.8168473","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

本文提出了一种新的相对小波双谱(RWB)脑电信号特征提取方法,用于区分酗酒者和非酗酒者的脑电信号。首先,计算脑电信号的自相关频率,作为双谱计算的基本步骤。然后,用离散小波变换(DWT)代替通常用于双谱计算的FFT。最后,计算近似部分和细节部分各频带的相对值,得到RWB。该方法在一个酒精自动检测系统中实现,该系统使用了来自UCI脑电图数据库的1200个酒精中毒数据样本。从实验中可以看出,自相关计算中滞后的设定值对得到的识别率影响很大,即滞后的最大值最好。通过交叉验证,结合人工神经网络分类器的RWB特征提取方法的最高识别率达到90%左右。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Relative wavelet bispectrum feature for alcoholic EEG signal classification using artificial neural network
This paper proposes a novel relative wavelet bispectrum (RWB) approach for EEG signal feature extraction method to differentiate the signal between the alcoholic over the non-alcoholic subjects. Firstly, the EEG signal is calculated for its autocorrelation frequencies as the basic step in the bispectrum calculation. Then, the discrete wavelet transform (DWT) is applied substituting the FFT which usually is used in the bispectrum calculation. Lastly, the relative value of each frequency band is calculated for both the approximation and the details parts, producing the RWB. The proposed methodology is implemented in an alcoholic automated detection system using 1200 data samples from UCI EEG Database for alcoholism. Based on the experiments, the setting value of lag in the autocorrelation calculation was evidently very influential on the recognition rate obtained, i.e. the maximum value for the lag was the best. Using cross validation, the highest results from RWB feature extraction method with ANN classifier achieved about 90% recognition rate.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Effect of anode and cathode workfunction on the operating voltage and luminance of a single emissive layer organic light emitting diode Concept development for quantification of integrated energy security Indonesian text feature extraction using gibbs sampling and mean variational inference latent dirichlet allocation Measurement of particles in oil using shear horizontal surface acoustic wave sensor Palm vein recognition by using modified of local binary pattern (LBP) for extraction feature
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1