Asterism:用于数据密集型科学的Pegasus和Dispel4py混合工作流

Rosa Filgueira, Rafael Ferreira da Silva, A. Krause, E. Deelman, M. Atkinson
{"title":"Asterism:用于数据密集型科学的Pegasus和Dispel4py混合工作流","authors":"Rosa Filgueira, Rafael Ferreira da Silva, A. Krause, E. Deelman, M. Atkinson","doi":"10.1109/DATACLOUD.2016.4","DOIUrl":null,"url":null,"abstract":"We present Asterism, an open source data-intensive framework, which combines the strengths of traditional workflow management systems with new parallel stream-based dataflow systems to run data-intensive applications across multiple heterogeneous resources, without users having to: re-formulate their methods according to different enactment engines; manage the data distribution across systems; parallelize their methods; co-place and schedule their methods with computing resources; and store and transfer large/small volumes of data. We also present the Data-Intensive workflows as a Service (DIaaS) model, which enables easy dataintensive workow composition and deployment on clouds using containers. The feasibility of Asterism and DIaaS model have been evaluated using a real domain application on the NSF-Chameleon cloud. Experimental results shows how Asterism successfully and efficiently exploits combinations of diverse computational platforms, whereas DIaaS delivers specialized software to execute data-intensive applications in a scalable, efficient, and robust way reducing the engineering time and computational cost.","PeriodicalId":325593,"journal":{"name":"2016 Seventh International Workshop on Data-Intensive Computing in the Clouds (DataCloud)","volume":"176 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":"{\"title\":\"Asterism: Pegasus and Dispel4py Hybrid Workflows for Data-Intensive Science\",\"authors\":\"Rosa Filgueira, Rafael Ferreira da Silva, A. Krause, E. Deelman, M. Atkinson\",\"doi\":\"10.1109/DATACLOUD.2016.4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present Asterism, an open source data-intensive framework, which combines the strengths of traditional workflow management systems with new parallel stream-based dataflow systems to run data-intensive applications across multiple heterogeneous resources, without users having to: re-formulate their methods according to different enactment engines; manage the data distribution across systems; parallelize their methods; co-place and schedule their methods with computing resources; and store and transfer large/small volumes of data. We also present the Data-Intensive workflows as a Service (DIaaS) model, which enables easy dataintensive workow composition and deployment on clouds using containers. The feasibility of Asterism and DIaaS model have been evaluated using a real domain application on the NSF-Chameleon cloud. Experimental results shows how Asterism successfully and efficiently exploits combinations of diverse computational platforms, whereas DIaaS delivers specialized software to execute data-intensive applications in a scalable, efficient, and robust way reducing the engineering time and computational cost.\",\"PeriodicalId\":325593,\"journal\":{\"name\":\"2016 Seventh International Workshop on Data-Intensive Computing in the Clouds (DataCloud)\",\"volume\":\"176 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-11-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 Seventh International Workshop on Data-Intensive Computing in the Clouds (DataCloud)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DATACLOUD.2016.4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 Seventh International Workshop on Data-Intensive Computing in the Clouds (DataCloud)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DATACLOUD.2016.4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

摘要

我们提出了Asterism,一个开源的数据密集型框架,它将传统工作流管理系统的优势与新的基于并行流的数据流系统相结合,可以跨多个异构资源运行数据密集型应用程序,而无需用户根据不同的执行引擎重新制定方法;管理跨系统的数据分布;并行化它们的方法;将他们的方法与计算资源共同放置和调度;并存储和传输大/小批量数据。我们还介绍了数据密集型工作流即服务(DIaaS)模型,该模型支持使用容器在云上进行简单的数据密集型工作流组合和部署。通过nsf变色龙云的实际域应用,对Asterism和DIaaS模型的可行性进行了评估。实验结果表明Asterism成功且高效地利用了多种计算平台的组合,而DIaaS则提供了专门的软件,以可扩展、高效和稳健的方式执行数据密集型应用程序,从而减少了工程时间和计算成本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Asterism: Pegasus and Dispel4py Hybrid Workflows for Data-Intensive Science
We present Asterism, an open source data-intensive framework, which combines the strengths of traditional workflow management systems with new parallel stream-based dataflow systems to run data-intensive applications across multiple heterogeneous resources, without users having to: re-formulate their methods according to different enactment engines; manage the data distribution across systems; parallelize their methods; co-place and schedule their methods with computing resources; and store and transfer large/small volumes of data. We also present the Data-Intensive workflows as a Service (DIaaS) model, which enables easy dataintensive workow composition and deployment on clouds using containers. The feasibility of Asterism and DIaaS model have been evaluated using a real domain application on the NSF-Chameleon cloud. Experimental results shows how Asterism successfully and efficiently exploits combinations of diverse computational platforms, whereas DIaaS delivers specialized software to execute data-intensive applications in a scalable, efficient, and robust way reducing the engineering time and computational cost.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Improved Data-Aware Task Dispatching for Batch Queuing Systems A Multi-tenant Fair Share Approach to Full-text Search Engine An Efficient Parallel Implementation of a Light-weight Data Privacy Method for Mobile Cloud Users Asterism: Pegasus and Dispel4py Hybrid Workflows for Data-Intensive Science Data-Intensive Supercomputing in the Cloud: Global Analytics for Satellite Imagery
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1