快充锂离子电池循环寿命预测特征选择

Rehan Mohammed, Vu Le, D. Creighton, Anwar Hosen
{"title":"快充锂离子电池循环寿命预测特征选择","authors":"Rehan Mohammed, Vu Le, D. Creighton, Anwar Hosen","doi":"10.1109/IAICT59002.2023.10205862","DOIUrl":null,"url":null,"abstract":"Machine learning algorithms are widely used in data-driven predictive maintenance to address prognostics of the condition of lithium-ion batteries over their cycle life. However, selecting relevant features remains a critical issue when predicting the remaining useful life (RUL) of these batteries using data-driven approaches. This issue can significantly affect the performance of machine learning algorithms and lead to time loss. In this paper, we investigate the effectiveness of two feature selection techniques that use the Recursive Feature Elimination (RFE) method for predicting the RUL of fast-charged lithium-ion batteries. We use the RFE-LASSO and RFE-XGB methods for feature selection and the Elastic Net and Relevance Vector Regression models for RUL prediction. Experimental results using Nature Energy’s battery dataset show that the RFEXGB feature selection method can provide stable prediction performance using 33 or more features. Furthermore, when integrated with the Elastic Net model, RFE-XGB achieves the lowest prediction error at a train-test split of 80%-20%.","PeriodicalId":339796,"journal":{"name":"2023 IEEE International Conference on Industry 4.0, Artificial Intelligence, and Communications Technology (IAICT)","volume":"58 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Feature Selection for Cycle Life Prediction of Fast-Charged Lithium-ion Batteries\",\"authors\":\"Rehan Mohammed, Vu Le, D. Creighton, Anwar Hosen\",\"doi\":\"10.1109/IAICT59002.2023.10205862\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Machine learning algorithms are widely used in data-driven predictive maintenance to address prognostics of the condition of lithium-ion batteries over their cycle life. However, selecting relevant features remains a critical issue when predicting the remaining useful life (RUL) of these batteries using data-driven approaches. This issue can significantly affect the performance of machine learning algorithms and lead to time loss. In this paper, we investigate the effectiveness of two feature selection techniques that use the Recursive Feature Elimination (RFE) method for predicting the RUL of fast-charged lithium-ion batteries. We use the RFE-LASSO and RFE-XGB methods for feature selection and the Elastic Net and Relevance Vector Regression models for RUL prediction. Experimental results using Nature Energy’s battery dataset show that the RFEXGB feature selection method can provide stable prediction performance using 33 or more features. Furthermore, when integrated with the Elastic Net model, RFE-XGB achieves the lowest prediction error at a train-test split of 80%-20%.\",\"PeriodicalId\":339796,\"journal\":{\"name\":\"2023 IEEE International Conference on Industry 4.0, Artificial Intelligence, and Communications Technology (IAICT)\",\"volume\":\"58 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE International Conference on Industry 4.0, Artificial Intelligence, and Communications Technology (IAICT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IAICT59002.2023.10205862\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE International Conference on Industry 4.0, Artificial Intelligence, and Communications Technology (IAICT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IAICT59002.2023.10205862","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

机器学习算法广泛用于数据驱动的预测性维护,以解决锂离子电池在其循环寿命期间的状况预测。然而,在使用数据驱动的方法预测这些电池的剩余使用寿命(RUL)时,选择相关特征仍然是一个关键问题。这个问题会严重影响机器学习算法的性能,并导致时间损失。在本文中,我们研究了两种使用递归特征消除(RFE)方法预测快充锂离子电池RUL的特征选择技术的有效性。我们使用RFE-LASSO和RFE-XGB方法进行特征选择,并使用弹性网络和相关向量回归模型进行RUL预测。使用Nature Energy电池数据集的实验结果表明,RFEXGB特征选择方法可以使用33个或更多的特征提供稳定的预测性能。在与Elastic Net模型相结合时,RFE-XGB在列车测试分割率为80%-20%时的预测误差最低。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Feature Selection for Cycle Life Prediction of Fast-Charged Lithium-ion Batteries
Machine learning algorithms are widely used in data-driven predictive maintenance to address prognostics of the condition of lithium-ion batteries over their cycle life. However, selecting relevant features remains a critical issue when predicting the remaining useful life (RUL) of these batteries using data-driven approaches. This issue can significantly affect the performance of machine learning algorithms and lead to time loss. In this paper, we investigate the effectiveness of two feature selection techniques that use the Recursive Feature Elimination (RFE) method for predicting the RUL of fast-charged lithium-ion batteries. We use the RFE-LASSO and RFE-XGB methods for feature selection and the Elastic Net and Relevance Vector Regression models for RUL prediction. Experimental results using Nature Energy’s battery dataset show that the RFEXGB feature selection method can provide stable prediction performance using 33 or more features. Furthermore, when integrated with the Elastic Net model, RFE-XGB achieves the lowest prediction error at a train-test split of 80%-20%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
UE Clustering Based on Grid Affinity Propagation for mmWave D2D in Virtual Small Cells Temporal-Spatial Time Series Self-Attention 2D & 3D Human Motion Forecasting An End-to-end Anchorless Approach to Recognize Hand Gestures using CenterNet Automated Human Facial Emotion Recognition System Using Depthwise Separable Convolutional Neural Network Snacks Detection Under Overlapped Conditions Using Computer Vision
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1