挖掘轨迹数据和识别出租车运动行程模式

Rami Ibrahim, M. O. Shafiq
{"title":"挖掘轨迹数据和识别出租车运动行程模式","authors":"Rami Ibrahim, M. O. Shafiq","doi":"10.1109/ICDIM.2018.8847135","DOIUrl":null,"url":null,"abstract":"In past years, trajectory data generated from Automatic Identification System (AIS) networks and taxi GPS devices increased significantly. There is a high demand for analyzing this data and extracting the knowledge from it. Large-scale taxi trajectory data is represented by a sequence of timestamped geographical locations, this sequence starts with the origin point and ends with the destination point. Applying data mining techniques such as clustering on trajectory data can provide useful information about the movement patterns and the behavior of people. Thus, can enhance the transportation management services in terms of urban planning and environment issues. In this paper, we propose a methodology which extracts movement patterns of taxi trips in Porto, Portugal. we cluster taxi trips using Hierarchical Density-Based Spatial Clustering of Applications with Noise (HDBSCAN) algorithm, each point in the trip is a pair of coordinates which consists of longitude and latitude values.","PeriodicalId":120884,"journal":{"name":"2018 Thirteenth International Conference on Digital Information Management (ICDIM)","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Mining Trajectory Data and Identifying Patterns for Taxi Movement Trips\",\"authors\":\"Rami Ibrahim, M. O. Shafiq\",\"doi\":\"10.1109/ICDIM.2018.8847135\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In past years, trajectory data generated from Automatic Identification System (AIS) networks and taxi GPS devices increased significantly. There is a high demand for analyzing this data and extracting the knowledge from it. Large-scale taxi trajectory data is represented by a sequence of timestamped geographical locations, this sequence starts with the origin point and ends with the destination point. Applying data mining techniques such as clustering on trajectory data can provide useful information about the movement patterns and the behavior of people. Thus, can enhance the transportation management services in terms of urban planning and environment issues. In this paper, we propose a methodology which extracts movement patterns of taxi trips in Porto, Portugal. we cluster taxi trips using Hierarchical Density-Based Spatial Clustering of Applications with Noise (HDBSCAN) algorithm, each point in the trip is a pair of coordinates which consists of longitude and latitude values.\",\"PeriodicalId\":120884,\"journal\":{\"name\":\"2018 Thirteenth International Conference on Digital Information Management (ICDIM)\",\"volume\":\"38 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 Thirteenth International Conference on Digital Information Management (ICDIM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDIM.2018.8847135\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 Thirteenth International Conference on Digital Information Management (ICDIM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDIM.2018.8847135","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

近年来,由自动识别系统(AIS)网络和出租车GPS设备生成的轨迹数据显著增加。对这些数据进行分析并从中提取知识的要求很高。大规模出租车轨迹数据由一系列带时间戳的地理位置表示,该序列从原点开始,以目的地结束。在轨迹数据上应用聚类等数据挖掘技术可以提供关于人的运动模式和行为的有用信息。因此,可以加强交通管理服务在城市规划和环境方面的问题。在本文中,我们提出了一种方法,提取运动模式的出租车旅行在波尔图,葡萄牙。我们使用基于层次密度的带噪声应用空间聚类(HDBSCAN)算法对出租车行程进行聚类,行程中的每个点都是由经纬度值组成的一对坐标。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Mining Trajectory Data and Identifying Patterns for Taxi Movement Trips
In past years, trajectory data generated from Automatic Identification System (AIS) networks and taxi GPS devices increased significantly. There is a high demand for analyzing this data and extracting the knowledge from it. Large-scale taxi trajectory data is represented by a sequence of timestamped geographical locations, this sequence starts with the origin point and ends with the destination point. Applying data mining techniques such as clustering on trajectory data can provide useful information about the movement patterns and the behavior of people. Thus, can enhance the transportation management services in terms of urban planning and environment issues. In this paper, we propose a methodology which extracts movement patterns of taxi trips in Porto, Portugal. we cluster taxi trips using Hierarchical Density-Based Spatial Clustering of Applications with Noise (HDBSCAN) algorithm, each point in the trip is a pair of coordinates which consists of longitude and latitude values.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Attention Based Neural Architecture for Rumor Detection with Author Context Awareness Urdu Text Classification: A comparative study using machine learning techniques The Effect of Different Type of Information on Trust in Facebook Page Towards scalable standards for web content usability Ontology Coverage Tool and Document Browser for Learning Material Exploration
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1