Xinxing Chen, Kuangen Zhang, Yuquan Leng, Chenglong Fu
{"title":"一种基于多任务学习的人体运动分类与识别方法","authors":"Xinxing Chen, Kuangen Zhang, Yuquan Leng, Chenglong Fu","doi":"10.1109/ICARM52023.2021.9536166","DOIUrl":null,"url":null,"abstract":"Wearable robotic systems have been widely studied in recent years, but it still remains a challenge to design a user-adaptive controller for wearable robotic systems to ensure personalized and accurate human-robot interaction. Accurate human motion classification and person identification are two premises helping design user-adaptive controllers for wearable robotic systems. In this paper, we proposed a multi-task learning method for human motion classification and person identification with a single neural network, which can serve as a solution to personalized human-robot interaction, and can also serve as a benchmark for the following studies in related fields. The multi-task learning neural network was trained and tested on a public human motion data set. The proposed method was capable to classify human motions and identify the person, with 99.13% and 96.51% accuracy, respectively. We also compared the proposed method with a benchmark single task learning method for human motion classification, the results showed that the performance of the multi-task learning method is more superior.","PeriodicalId":367307,"journal":{"name":"2021 6th IEEE International Conference on Advanced Robotics and Mechatronics (ICARM)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Multi-task Learning Method for Human Motion Classification and Person Identification\",\"authors\":\"Xinxing Chen, Kuangen Zhang, Yuquan Leng, Chenglong Fu\",\"doi\":\"10.1109/ICARM52023.2021.9536166\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Wearable robotic systems have been widely studied in recent years, but it still remains a challenge to design a user-adaptive controller for wearable robotic systems to ensure personalized and accurate human-robot interaction. Accurate human motion classification and person identification are two premises helping design user-adaptive controllers for wearable robotic systems. In this paper, we proposed a multi-task learning method for human motion classification and person identification with a single neural network, which can serve as a solution to personalized human-robot interaction, and can also serve as a benchmark for the following studies in related fields. The multi-task learning neural network was trained and tested on a public human motion data set. The proposed method was capable to classify human motions and identify the person, with 99.13% and 96.51% accuracy, respectively. We also compared the proposed method with a benchmark single task learning method for human motion classification, the results showed that the performance of the multi-task learning method is more superior.\",\"PeriodicalId\":367307,\"journal\":{\"name\":\"2021 6th IEEE International Conference on Advanced Robotics and Mechatronics (ICARM)\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 6th IEEE International Conference on Advanced Robotics and Mechatronics (ICARM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICARM52023.2021.9536166\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 6th IEEE International Conference on Advanced Robotics and Mechatronics (ICARM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICARM52023.2021.9536166","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Multi-task Learning Method for Human Motion Classification and Person Identification
Wearable robotic systems have been widely studied in recent years, but it still remains a challenge to design a user-adaptive controller for wearable robotic systems to ensure personalized and accurate human-robot interaction. Accurate human motion classification and person identification are two premises helping design user-adaptive controllers for wearable robotic systems. In this paper, we proposed a multi-task learning method for human motion classification and person identification with a single neural network, which can serve as a solution to personalized human-robot interaction, and can also serve as a benchmark for the following studies in related fields. The multi-task learning neural network was trained and tested on a public human motion data set. The proposed method was capable to classify human motions and identify the person, with 99.13% and 96.51% accuracy, respectively. We also compared the proposed method with a benchmark single task learning method for human motion classification, the results showed that the performance of the multi-task learning method is more superior.