基于人工智能的虚拟传感器在移动设备上融合激光雷达+摄像头传感器数据,为视障人士提供态势感知

Vivek Bharati
{"title":"基于人工智能的虚拟传感器在移动设备上融合激光雷达+摄像头传感器数据,为视障人士提供态势感知","authors":"Vivek Bharati","doi":"10.1109/SAS51076.2021.9530102","DOIUrl":null,"url":null,"abstract":"Autonomy of the blind and visually impaired can be achieved through technological means and thereby empowering them with a sense of independence. Mobile phones are ubiquitous and can access artificial intelligence capabilities locally and in the Cloud. Navigational sensors, such as Light Detection and Ranging (LiDAR), and wide angle cameras, typically found in self-driving cars, are beginning to be incorporated into mobile phones. In this paper, we propose techniques for using mobile phone LiDAR + camera sensor data fusion along with edge + Cloud split AI to create an indoor situational awareness and navigational aid for the visually impaired. In addition to physical sensors, the system uses AI models as virtual sensors to provide the required functionality. The system enhances the image of a scene captured by a camera using distance information from the LiDAR and directional information computed by the device to provide a rich 3-D description of the space in front of the user. The system also uses a combination of sensor data fusion and geometric formulas to provide step-by-step walking instructions for the user in order to reach destinations. The user-centric system proposed here can be a valuable assistive technology for the blind and visually imnpired.","PeriodicalId":224327,"journal":{"name":"2021 IEEE Sensors Applications Symposium (SAS)","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"LiDAR + Camera Sensor Data Fusion On Mobiles With AI-based Virtual Sensors To Provide Situational Awareness For The Visually Impaired\",\"authors\":\"Vivek Bharati\",\"doi\":\"10.1109/SAS51076.2021.9530102\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Autonomy of the blind and visually impaired can be achieved through technological means and thereby empowering them with a sense of independence. Mobile phones are ubiquitous and can access artificial intelligence capabilities locally and in the Cloud. Navigational sensors, such as Light Detection and Ranging (LiDAR), and wide angle cameras, typically found in self-driving cars, are beginning to be incorporated into mobile phones. In this paper, we propose techniques for using mobile phone LiDAR + camera sensor data fusion along with edge + Cloud split AI to create an indoor situational awareness and navigational aid for the visually impaired. In addition to physical sensors, the system uses AI models as virtual sensors to provide the required functionality. The system enhances the image of a scene captured by a camera using distance information from the LiDAR and directional information computed by the device to provide a rich 3-D description of the space in front of the user. The system also uses a combination of sensor data fusion and geometric formulas to provide step-by-step walking instructions for the user in order to reach destinations. The user-centric system proposed here can be a valuable assistive technology for the blind and visually imnpired.\",\"PeriodicalId\":224327,\"journal\":{\"name\":\"2021 IEEE Sensors Applications Symposium (SAS)\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE Sensors Applications Symposium (SAS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SAS51076.2021.9530102\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE Sensors Applications Symposium (SAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SAS51076.2021.9530102","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

盲人和视障人士的自主性可以通过技术手段实现,从而赋予他们独立感。移动电话无处不在,可以访问本地和云端的人工智能功能。导航传感器,如光探测和测距(LiDAR)和广角摄像头,通常用于自动驾驶汽车,正开始被整合到手机中。在本文中,我们提出了使用手机激光雷达+相机传感器数据融合以及边缘+云分割AI的技术,为视障人士创建室内态势感知和导航辅助。除了物理传感器外,该系统还使用人工智能模型作为虚拟传感器来提供所需的功能。该系统利用来自激光雷达的距离信息和设备计算的方向信息,增强摄像机捕获的场景图像,为用户面前的空间提供丰富的3d描述。该系统还结合了传感器数据融合和几何公式,为用户提供一步一步的行走指导,以便到达目的地。本文提出的以用户为中心的系统对盲人和视障人士来说是一种有价值的辅助技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
LiDAR + Camera Sensor Data Fusion On Mobiles With AI-based Virtual Sensors To Provide Situational Awareness For The Visually Impaired
Autonomy of the blind and visually impaired can be achieved through technological means and thereby empowering them with a sense of independence. Mobile phones are ubiquitous and can access artificial intelligence capabilities locally and in the Cloud. Navigational sensors, such as Light Detection and Ranging (LiDAR), and wide angle cameras, typically found in self-driving cars, are beginning to be incorporated into mobile phones. In this paper, we propose techniques for using mobile phone LiDAR + camera sensor data fusion along with edge + Cloud split AI to create an indoor situational awareness and navigational aid for the visually impaired. In addition to physical sensors, the system uses AI models as virtual sensors to provide the required functionality. The system enhances the image of a scene captured by a camera using distance information from the LiDAR and directional information computed by the device to provide a rich 3-D description of the space in front of the user. The system also uses a combination of sensor data fusion and geometric formulas to provide step-by-step walking instructions for the user in order to reach destinations. The user-centric system proposed here can be a valuable assistive technology for the blind and visually imnpired.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Quasi-Static Magnetic Localization of Capsule Endoscopes with an Active Integrated Coil Comparing BLE and NB-IoT as Communication Options for Smart Viticulture IoT Applications Self-Compensation of Cross Influences using Spectral Transmission Ratios for Optical Fiber Sensors in Lithium-Ion Batteries Polycrystalline silicon photovoltaic harvesting for indoor IoT systems under red- far red artificial light SCPI: IoT and the Déjà Vu of Instrument Control
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1