基于牛蹄的仿生水田轮设计及牵引性能试验

Lan Li, Jing Li, B. Xie, Fei Lin, Long Xue
{"title":"基于牛蹄的仿生水田轮设计及牵引性能试验","authors":"Lan Li, Jing Li, B. Xie, Fei Lin, Long Xue","doi":"10.56884/otpf6196","DOIUrl":null,"url":null,"abstract":"In order to improve the traction performance of the micro-tiller wheel on the paddy soil surface, a bionic paddy wheel was designed with a cattle hoof as the bionic prototype, and its diameter and wheel width were 0.46 m and 0.08 m, respectively. The traction performance test was carried out in a soil bin test-bed with a moisture content of 36 %. The vertical loads were 82.57 N, 131.40 N and 179.42 N, respectively. The driving speeds were 0.3 m/s, 0.5 m/s and 0.7 m/s, respectively. The drawbar pull was in the range of 10 – 120 N. The results showed that at the driving speed of 0.7 m/s, with the increase of the vertical load, the driving torque and the drawbar pull are increasing. The vertical load has a significant effect on the change of driving torque and maximum drawbar pull. Under the vertical load of 179.42 N and different driving speeds, when the slip ratio is less than 0.37, the efficiency coefficient begins to grow rapidly, and the greater the driving speed is, the greater the growth rate is. When the slip ratio is about 0.37, the efficiency coefficient reaches the maximum and then begins to decrease. Driving speed has a significant effect on the maximum efficiency coefficient of wheels. This paper can provide a reference for the traction performance of the micro-tiller wheel on the paddy soil surface and the design of the new bionic paddy wheel.","PeriodicalId":447600,"journal":{"name":"Proceedings of the 11th Asia-Pacific Regional Conference of the ISTVS","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design and Traction Performance Test of Bionic Paddy Wheel Based on Cattle Hoof\",\"authors\":\"Lan Li, Jing Li, B. Xie, Fei Lin, Long Xue\",\"doi\":\"10.56884/otpf6196\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In order to improve the traction performance of the micro-tiller wheel on the paddy soil surface, a bionic paddy wheel was designed with a cattle hoof as the bionic prototype, and its diameter and wheel width were 0.46 m and 0.08 m, respectively. The traction performance test was carried out in a soil bin test-bed with a moisture content of 36 %. The vertical loads were 82.57 N, 131.40 N and 179.42 N, respectively. The driving speeds were 0.3 m/s, 0.5 m/s and 0.7 m/s, respectively. The drawbar pull was in the range of 10 – 120 N. The results showed that at the driving speed of 0.7 m/s, with the increase of the vertical load, the driving torque and the drawbar pull are increasing. The vertical load has a significant effect on the change of driving torque and maximum drawbar pull. Under the vertical load of 179.42 N and different driving speeds, when the slip ratio is less than 0.37, the efficiency coefficient begins to grow rapidly, and the greater the driving speed is, the greater the growth rate is. When the slip ratio is about 0.37, the efficiency coefficient reaches the maximum and then begins to decrease. Driving speed has a significant effect on the maximum efficiency coefficient of wheels. This paper can provide a reference for the traction performance of the micro-tiller wheel on the paddy soil surface and the design of the new bionic paddy wheel.\",\"PeriodicalId\":447600,\"journal\":{\"name\":\"Proceedings of the 11th Asia-Pacific Regional Conference of the ISTVS\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 11th Asia-Pacific Regional Conference of the ISTVS\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.56884/otpf6196\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 11th Asia-Pacific Regional Conference of the ISTVS","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.56884/otpf6196","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

为了提高微型分蘖轮在水稻土表面的牵引性能,设计了一种以牛蹄为仿生原型的仿生水稻轮,其直径为0.46 m,轮宽为0.08 m。牵引性能试验在含水率为36%的土仓试验台上进行。垂直荷载分别为82.57 N、131.40 N和179.42 N。车速分别为0.3 m/s、0.5 m/s和0.7 m/s。结果表明,在行驶速度为0.7 m/s时,随着垂直载荷的增大,驱动力矩和拉拔力都在增大。垂直载荷对驱动转矩和最大拉杆拉力的变化有显著影响。在179.42 N垂直荷载和不同行驶速度下,当滑移比小于0.37时,效率系数开始快速增长,且行驶速度越大,增长速度越大。当滑移比约为0.37时,效率系数达到最大值后开始减小。行驶速度对车轮最大效率系数有显著影响。本文可为微型分蘖轮在水稻土表面的牵引性能及新型仿生水稻轮的设计提供参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Design and Traction Performance Test of Bionic Paddy Wheel Based on Cattle Hoof
In order to improve the traction performance of the micro-tiller wheel on the paddy soil surface, a bionic paddy wheel was designed with a cattle hoof as the bionic prototype, and its diameter and wheel width were 0.46 m and 0.08 m, respectively. The traction performance test was carried out in a soil bin test-bed with a moisture content of 36 %. The vertical loads were 82.57 N, 131.40 N and 179.42 N, respectively. The driving speeds were 0.3 m/s, 0.5 m/s and 0.7 m/s, respectively. The drawbar pull was in the range of 10 – 120 N. The results showed that at the driving speed of 0.7 m/s, with the increase of the vertical load, the driving torque and the drawbar pull are increasing. The vertical load has a significant effect on the change of driving torque and maximum drawbar pull. Under the vertical load of 179.42 N and different driving speeds, when the slip ratio is less than 0.37, the efficiency coefficient begins to grow rapidly, and the greater the driving speed is, the greater the growth rate is. When the slip ratio is about 0.37, the efficiency coefficient reaches the maximum and then begins to decrease. Driving speed has a significant effect on the maximum efficiency coefficient of wheels. This paper can provide a reference for the traction performance of the micro-tiller wheel on the paddy soil surface and the design of the new bionic paddy wheel.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Factors Affecting Bevameter Soil Characterization Vehicle Dynamic Factor Characterized by Actual Velocity and Combined Influence of the Transmission and Driveline System Experimental Study of Track-Soil Interactions of the Steering Performance of Tracked Robots over Soft Deformable Terrains Introducing Polibot: A High Mobility Tracked Robot with Innovative Passive Suspensions Investigation of the Shear Stress Dynamics on Silty Loam Soil and Measurement of Traction-Wheel Slip Relationship of a Tractor Tire
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1