隐私还是安全?看一看再决定

Bettina Fazzinga, F. Furfaro, E. Masciari, G. Mazzeo
{"title":"隐私还是安全?看一看再决定","authors":"Bettina Fazzinga, F. Furfaro, E. Masciari, G. Mazzeo","doi":"10.1145/2949689.2949706","DOIUrl":null,"url":null,"abstract":"Big data paradigm is currently the leading paradigm for data production and management. As a matter of fact, new information are generated at high rates in specialized fields (e.g., cybersecurity scenario). This may cause that the events to be studied occur at rates that are too fast to be effectively analyzed in real time. For example, in order to detect possible security threats, millions of records in a high-speed flow stream must be screened. To ameliorate this problem, a viable solution is the use of data compression for reducing the amount of data to be analyzed. In this paper we propose the use of privacy-preserving histograms, that provide approximate answers to 'safe' queries, for analyzing data in the cybersecurity scenario without compromising individuals' privacy, and we describe our system that has been used in a real life scenario.","PeriodicalId":254803,"journal":{"name":"Proceedings of the 28th International Conference on Scientific and Statistical Database Management","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Privacy or Security?: Take A Look And Then Decide\",\"authors\":\"Bettina Fazzinga, F. Furfaro, E. Masciari, G. Mazzeo\",\"doi\":\"10.1145/2949689.2949706\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Big data paradigm is currently the leading paradigm for data production and management. As a matter of fact, new information are generated at high rates in specialized fields (e.g., cybersecurity scenario). This may cause that the events to be studied occur at rates that are too fast to be effectively analyzed in real time. For example, in order to detect possible security threats, millions of records in a high-speed flow stream must be screened. To ameliorate this problem, a viable solution is the use of data compression for reducing the amount of data to be analyzed. In this paper we propose the use of privacy-preserving histograms, that provide approximate answers to 'safe' queries, for analyzing data in the cybersecurity scenario without compromising individuals' privacy, and we describe our system that has been used in a real life scenario.\",\"PeriodicalId\":254803,\"journal\":{\"name\":\"Proceedings of the 28th International Conference on Scientific and Statistical Database Management\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 28th International Conference on Scientific and Statistical Database Management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2949689.2949706\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 28th International Conference on Scientific and Statistical Database Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2949689.2949706","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

大数据范式是当前数据生产和管理的主导范式。事实上,在特定领域(如网络安全场景),新信息的生成速度非常快。这可能导致要研究的事件以太快的速度发生,无法进行有效的实时分析。例如,为了检测可能的安全威胁,必须对高速流中的数百万条记录进行筛选。为了改善这个问题,一个可行的解决方案是使用数据压缩来减少要分析的数据量。在本文中,我们建议使用隐私保护直方图,它为“安全”查询提供近似答案,用于在不损害个人隐私的情况下分析网络安全场景中的数据,并且我们描述了我们在现实生活场景中使用的系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Privacy or Security?: Take A Look And Then Decide
Big data paradigm is currently the leading paradigm for data production and management. As a matter of fact, new information are generated at high rates in specialized fields (e.g., cybersecurity scenario). This may cause that the events to be studied occur at rates that are too fast to be effectively analyzed in real time. For example, in order to detect possible security threats, millions of records in a high-speed flow stream must be screened. To ameliorate this problem, a viable solution is the use of data compression for reducing the amount of data to be analyzed. In this paper we propose the use of privacy-preserving histograms, that provide approximate answers to 'safe' queries, for analyzing data in the cybersecurity scenario without compromising individuals' privacy, and we describe our system that has been used in a real life scenario.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
SMS: Stable Matching Algorithm using Skylines Graph-based modelling of query sets for differential privacy Efficient Feedback Collection for Pay-as-you-go Source Selection Multi-Assignment Single Joins for Parallel Cross-Match of Astronomic Catalogs on Heterogeneous Clusters Compact and queryable representation of raster datasets
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1